Zero-Hopf bifurcation in a Chua system

被引:21
|
作者
Euzebio, Rodrigo D. [1 ,2 ]
Llibre, Jaume [2 ]
机构
[1] UNESP, IBILCE, Dept Matemat, Rua Cristovao Colombo 2265, BR-1505400 Sao Jose De Rio Preto, SP, Brazil
[2] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
基金
巴西圣保罗研究基金会;
关键词
Chua system; Periodic orbit; Averaging theory; Zero Hopf bifurcation; ANALYTIC UNFOLDINGS; SINGULARITY; CIRCUIT; SYNCHRONIZATION; DEGENERACIES; EQUATION; ORBITS; CHAOS;
D O I
10.1016/j.nonrwa.2017.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A zero-Hopf equilibrium is an isolated equilibrium point whose eigenvalues are +/- wi, not equal 0 and 0. In general for a such equilibrium there is no theory for knowing when it bifurcates some small-amplitude limit cycles moving the parameters of the system. Here we study the zero-Hopf bifurcation using the averaging theory. We apply this theory to a Chua system depending on 6 parameters, but the way followed for studying the zero-Hopf bifurcation can be applied to any other differential system in dimension 3 or higher. In this paper first we show that there are three 4-parameter families of Chua systems exhibiting a zero-Hopf equilibrium. After, by using the averaging theory, we provide sufficient conditions for the bifurcation of limit cycles from these families of zero-Hopf equilibria. From one family we can prove that 1 limit cycle bifurcates, and from the other two families we can prove that 1, 2 or 3 limit cycles bifurcate simultaneously. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 50 条