SnO2-based materials for pesticide degradation

被引:44
|
作者
Malpass, Geoffroy R. P. [1 ]
Miwa, Douglas W. [2 ]
Machado, Sergio A. S. [2 ]
Motheo, Artur J. [2 ]
机构
[1] Univ Fed ABC, Lab Eletroquim & Mat Nanoestruturados, BR-09210170 Santo Andre, SP, Brazil
[2] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Photo-assisted electrochemical degradation; Electrochemical degradation; Atrazine; Pesticides; WASTE-WATER TREATMENT; ELECTROCHEMICAL DEGRADATION; SURFACE CHARACTERIZATION; ORGANIC POLLUTANTS; DSA(R) ELECTRODES; OXIDATION; PHOTOCATALYSIS; ATRAZINE; REMOVAL; DYES;
D O I
10.1016/j.jhazmat.2010.04.006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents the results of the degradation of the pesticide atrazine using electrochemical and photo-assisted electrochemical degradation techniques using SnO2-containing electrode of nominal composition electrodes of composition Ti/Ru(x)Sni-O-x(2) (where X = 0.10, 0.15, 0.20, 0.25 and 0.30). The materials were characterized ex situ and in situ in order to correlate the observed atrazine removal rates with electrode morphology/composition. The results obtained demonstrate the effectiveness of the photo-assisted electrochemical degradation. Using purely electrochemical methods the rate of atrazine removal is almost zero at all the electrodes studied. However, the application of photo-assisted degradation results in almost complete atrazine removal in 1 h of electrolysis. The efficiency of atrazine degradation does not seem to be greatly affected by the electrode material or by SnO2 content, but the overall COD removal is dependent on the SnO2 content. Overall, the SnO2-containing electrodes do not reach the level of COD removal (maximum similar to 21%) seen for the Ti/Ru0.3Ti0.2O2 electrode. An interesting correlation between the morphology factor (phi) and chemical oxygen demand removal is observed. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:145 / 151
页数:7
相关论文
共 50 条
  • [21] Recent research developments in SnO2-based varistors
    Cássia-Santos, MR
    Sousa, VC
    Oliveira, MM
    Sensato, FR
    Bacelar, WK
    Gomes, JW
    Longo, E
    Leite, ER
    Varela, JA
    MATERIALS CHEMISTRY AND PHYSICS, 2005, 90 (01) : 1 - 9
  • [22] Influence of temperature conditions of forming nanosized SnO2-based materials on hydrogen sensor properties
    Sokovykh, E. V.
    Oleksenko, L. P.
    Maksymovych, N. P.
    Matushko, I. P.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2015, 121 (03) : 1159 - 1165
  • [23] CALIBRATION PROCEDURE FOR SNO2-BASED GAS SENSORS
    BARSAN, N
    TOMESCU, A
    THIN SOLID FILMS, 1995, 259 (01) : 91 - 95
  • [24] Development of SnO2-based Perovskite Solar Cells
    Gao P.
    Fan X.
    Li J.
    Guo P.
    Huang L.
    Sun J.
    Zhu H.
    Wang Y.
    Cailiao Daobao/Materials Reports, 2022, 36 (08):
  • [25] CO detectors SnO2-based thin films
    Olivera, ML
    Asomoza, R
    REVISTA MEXICANA DE FISICA, 1996, 42 (04) : 561 - 572
  • [26] CALIBRATION CURVE FOR SNO2-BASED GAS SENSORS
    BARSAN, N
    IONESCU, R
    VANCU, A
    SENSORS AND ACTUATORS B-CHEMICAL, 1994, 19 (1-3) : 466 - 469
  • [27] SENSING MECHANISM OF SNO2-BASED SENSORS FOR ALCOHOLS
    KIM, HP
    CHOI, JJ
    CHEONG, HW
    KIM, JM
    KIM, JM
    SENSORS AND ACTUATORS B-CHEMICAL, 1993, 14 (1-3) : 511 - 512
  • [28] DEVELOPMENT OF SNO2-BASED ETHANOL GAS SENSOR
    MAEKAWA, T
    TAMAKI, J
    MIURA, N
    YAMAZOE, N
    MATSUSHIMA, S
    SENSORS AND ACTUATORS B-CHEMICAL, 1992, 9 (01) : 63 - 69
  • [29] SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress
    Chen, Yichuan
    Meng, Qi
    Zhang, Linrui
    Han, Changbao
    Gao, Hongli
    Zhang, Yongzhe
    Yan, Hui
    JOURNAL OF ENERGY CHEMISTRY, 2019, 35 : 144 - 167
  • [30] Effects of organotin halide perovskite and Pt nanoparticles in SnO2-based sensing materials on the detection of formaldehyde
    Zhang, Xinyu
    Sun, Yue
    Fan, Yu
    Liu, Zhifu
    Zeng, Zhigang
    Zhao, Hongbin
    Wang, Xiaohong
    Xu, Jiaqiang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (23) : 20624 - 20637