New Efficient Regression Method for Local AADT Estimation via SCAD Variable Selection

被引:5
|
作者
Yang, Bingduo [1 ,2 ]
Wang, Sheng-Guo [3 ]
Bao, Yuanlu [4 ]
机构
[1] Jiangxi Univ Finance & Econ, Sch Finance, Nanchang 330013, Peoples R China
[2] Univ N Carolina, Charlotte, NC 28223 USA
[3] Univ N Carolina, Lee Coll Engn, Charlotte, NC 28223 USA
[4] Univ Sci & Technol China, Dept Automat, Hefei 230026, Peoples R China
基金
美国国家科学基金会;
关键词
Annual average daily traffic (AADT); regression; satellite information; smoothly clipped absolute deviation penalty (SCAD); NONCONCAVE PENALIZED LIKELIHOOD; TRAFFIC FLOW; LASSO;
D O I
10.1109/TITS.2014.2318039
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper focuses on the estimation and variable selection for the local annual average daily traffic (AADT). The variable selection procedure by smoothly clipped absolute deviation penalty is proposed. It can simultaneously select significant variables and estimate unknown regression coefficients in one step. The estimation algorithm and the tuning parameters selection are presented. The data from Mecklenburg County, North Carolina, USA, in 2007 are used for demonstration with our proposed variable selection procedures. The results show that this penalized regression technology improves the local AADT estimation along with satellite information, and it outperforms some other benchmark models.
引用
收藏
页码:2726 / 2731
页数:6
相关论文
共 50 条
  • [31] A study of variable bandwidth selection for local polynomial regression
    Fan, JQ
    Gijbels, I
    Hu, TC
    Huang, LS
    STATISTICA SINICA, 1996, 6 (01) : 113 - 127
  • [32] Ensemble estimation and variable selection with semiparametric regression models
    Shin, Sunyoung
    Liu, Yufeng
    Cole, Stephen R.
    Fine, Jason P.
    BIOMETRIKA, 2020, 107 (02) : 433 - 448
  • [33] Efficient estimation and variable selection for partially linear single-index-coefficient regression models
    Kim, Young-Ju
    COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2019, 26 (01) : 69 - 78
  • [34] Robust Variable Selection and Estimation in Threshold Regression Model
    Bo-wen Li
    Yun-qi Zhang
    Nian-sheng Tang
    Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 332 - 346
  • [35] Simultaneous variable selection and parametric estimation for quantile regression
    Wei Xiong
    Maozai Tian
    Journal of the Korean Statistical Society, 2015, 44 : 134 - 149
  • [36] Estimation and variable selection for partial functional linear regression
    Qingguo Tang
    Peng Jin
    AStA Advances in Statistical Analysis, 2019, 103 : 475 - 501
  • [37] Simultaneous variable selection and parametric estimation for quantile regression
    Xiong, Wei
    Tian, Maozai
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (01) : 134 - 149
  • [38] Estimation and variable selection for partial functional linear regression
    Tang, Qingguo
    Jin, Peng
    ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2019, 103 (04) : 475 - 501
  • [39] Robust Variable Selection and Estimation in Threshold Regression Model
    Bo-wen LI
    Yun-qi ZHANG
    Nian-sheng TANG
    Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 332 - 346
  • [40] Robust Variable Selection and Estimation in Threshold Regression Model
    Li, Bo-wen
    Zhang, Yun-qi
    Tang, Nian-sheng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2020, 36 (02): : 332 - 346