Dynamic Multitarget Detection Algorithm of Voxel Point Cloud Fusion Based on PointRCNN

被引:11
|
作者
Luo, Xizhao [1 ]
Zhou, Feng [2 ]
Tao, Chongben [2 ,3 ]
Yang, Anjia [4 ,5 ]
Zhang, Peiyun [6 ]
Chen, Yonghua [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Peoples R China
[2] Suzhou Univ Sci & Technol, Sch Elect & Informat Engn, Suzhou 215009, Peoples R China
[3] Tsinghua Univ, Suzhou Automobile Res Inst, Suzhou 215134, Peoples R China
[4] Jinan Univ, Sch Informat Sci & Technol, Guangzhou 510632, Peoples R China
[5] Jinan Univ, Sch Cyber Secur, Guangzhou 510632, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Comp & Software, Nanjing 210044, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Feature extraction; Three-dimensional displays; Point cloud compression; Object detection; Cameras; Heuristic algorithms; Autonomous vehicles; 3D target detection; autonomous driving; PointRCNN; multi-feature fusion; OBJECT DETECTION; VEHICLE; NETWORK; VISION;
D O I
10.1109/TITS.2022.3176390
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Current 3D target detection methods used in the field of autonomous driving generally have low real-time performance and insufficient target context feature to detect dynamic multi-target accurately. In order to solve these problems, a dynamic multi-target detection algorithm of voxel point cloud fusion based on PointRCNN is proposed, which adopts a two-stage detection structure. The first stage directly processes the point cloud to extract key point features and divides voxel space. A novel submanifold sparse convolution is used to extract voxel features. Then key point features and voxel features of the point cloud are merged to generate pre-selection boxes. In the second stage, reference points are set based on the voxel features. The features of key points around reference points are merged for the second time to achieve optimized detection boxes. Finally, for the problem of inconsistent confidence, a mandatory consistency loss function is proposed to improve the accuracy of the detection box. The proposed algorithm was compared with other algorithms in three different datasets, and further tested on a self-made dataset from an actual vehicle platform. Results showed that the proposed algorithm had higher accuracy, better robustness, stronger generalization ability for dynamic multi-target detection.
引用
收藏
页码:20707 / 20720
页数:14
相关论文
共 50 条
  • [21] Pavement crack detection based on point cloud data and data fusion
    Dong, Qiao
    Wang, Sike
    Chen, Xueqin
    Jiang, Wanqi
    Li, Ruiqi
    Gu, Xingyu
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2254):
  • [22] Object Detection Based on Fusion of Sparse Point Cloud and Image Information
    Xu, Xiaobin
    Zhang, Lei
    Yang, Jian
    Cao, Chenfei
    Tan, Zhiying
    Luo, Minzhou
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [23] 3D Point Cloud Object Detection Algorithm Based on Temporal Information Fusion and Uncertainty Estimation
    Xie, Guangda
    Li, Yang
    Wang, Yanping
    Li, Ziyi
    Qu, Hongquan
    REMOTE SENSING, 2023, 15 (12)
  • [24] Multi-Scale Feature Fusion Point Cloud Object Detection Based on Original Point Cloud and Projection
    Zhang, Zhikang
    Zhu, Zhongjie
    Bai, Yongqiang
    Jin, Yiwen
    Wang, Ming
    ELECTRONICS, 2024, 13 (11)
  • [25] A Dynamic Multitarget Detection Algorithm in front of Vehicle Based on Embedded System and Internet of Things
    Dou, Huili
    Wang, Guohua
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [26] Airborne LiDAR Point Cloud Filtering Algorithm Based on Dynamic Threshold
    Hui Zhenyang
    Lu Tieding
    Hu Youjian
    Yu Xianyu
    Xia Yuanping
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (06)
  • [27] GEOMORPHIC POINT CLOUD DATA PROCESSING BASED ON AMPLITUDE SEPARATION AND FUSION ALGORITHM
    Tang, Chen
    Wang, Chen
    Wan, Chuan
    Zhang, Maoyun
    Chen, Fenglong
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2024, 86 (03): : 301 - 314
  • [28] GEOMORPHIC POINT CLOUD DATA PROCESSING BASED ON AMPLITUDE SEPARATION AND FUSION ALGORITHM
    Tang, Chen
    Wang, Chen
    Wan, Chuan
    Zhang, Maoyun
    Chen, Fenglong
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2024, 86 (03): : 301 - 314
  • [29] From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to-Point Decoder
    Li, Jiale
    Dai, Hang
    Shao, Ling
    Ding, Yong
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4622 - 4631
  • [30] Point Cloud Feature Extraction Network Based on Multiscale Feature Dynamic Fusion
    Liu, Jing
    Zhang, Yuan
    Zhang, Le
    Li, Bo
    Yang, Xiaowen
    LASER & OPTOELECTRONICS PROGRESS, 2025, 62 (04)