Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit

被引:111
|
作者
Paulitsch, J. [1 ]
Schenkel, M. [2 ]
Zufrass, Th. [2 ]
Mayrhofer, P. H. [3 ]
Muenz, W.-D. [4 ]
机构
[1] Mat Ctr Leoben Forsch GmbH, A-8700 Leoben, Austria
[2] Systec SVS Vacuum Coating Technol GmbH, D-97753 Karlstadt, Germany
[3] Univ Leoben, Dept Phys Met & Mat Testing, A-8700 Leoben, Austria
[4] Emeritus Sheffield Hallam Univ, A-8160 Weiz, Austria
关键词
TiN; CrN; Hybrid HIPIMS/DCMS; Planetary rotation; Up-scaling; ION SURFACE INTERACTIONS; MECHANICAL-PROPERTIES; COATINGS; MICROSTRUCTURE; BOMBARDMENT; GROWTH; DENSITIES; ADHESION; STEEL;
D O I
10.1016/j.tsf.2010.05.062
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deposition of complex shaped or round-symmetric samples requires multi-fold substrate rotations during deposition or multiple cathode arrangements. The present paper investigates the influence of the high power impulse magnetron sputtering (HIPIMS) and DC magnetron sputtering (DCMS) process on the mechanical and tribological properties as well as the resulting structure of CrN and TiN coatings using static (0-fold) and dynamic (1-, 2- and 3-fold) depositions in an industrial scale unit. Furthermore, to increase the deposition rate without losing the high ion density in the plasma a hybrid HIPIMS/DCMS deposition technique is investigated. The results demonstrate the advantage of the HIPIMS technique when using multi-fold substrate rotation during deposition as it enables depositions of CrNHIPIMS and TiNHIPIMS coatings with hardness values around 23 and 35 GPa, respectively, compared with around 15 GPa for CrNDCMS and TiNDCMS coatings. Hardness values of 35 GPa for TiNDCMS coatings prepared with substrate rotations could only be obtained when introducing an additional anode or using a multilayered CrNHIPIMS/TiNDCMS base layer as a template. Based on our results we can conclude that especially for up-scaling and multi-fold substrate rotations the HIPIMS process offers an improved performance as compared to DCMS. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:5558 / 5564
页数:7
相关论文
共 50 条
  • [21] Oxidation Behaviour of Nanoscale Multilayer CrAlYN/CrN Coatings Deposited by the Combined High Power Impulse Magnetron Sputtering/Unbalanced Magnetron Sputtering Technique
    Reinhard, Christina
    Ehiasarian, Arutiun P.
    Hovsepian, Papken Eh
    PLASMA PROCESSES AND POLYMERS, 2007, 4 : S910 - S915
  • [22] A study of the phase transformation of low temperature deposited tantalum thin films using high power impulse magnetron sputtering and pulsed DC magnetron sputtering
    Chen, Wei-Chieh
    Wang, Zhao-Ying
    Yu, Chiao-Yi
    Liao, Bo-Huei
    Lin, Ming-Tzer
    SURFACE & COATINGS TECHNOLOGY, 2022, 436
  • [23] Optoelectronic properties of p-type NiO films deposited by direct current magnetron sputtering versus high power impulse magnetron sputtering
    Chen, Sheng-Chi
    Kuo, Tsung-Yen
    Lin, Hsin-Chih
    Chen, Rong-Zhi
    Sun, Hui
    APPLIED SURFACE SCIENCE, 2020, 508
  • [24] Microstructure of ZnO thin films deposited by high power impulse magnetron sputtering
    Reed, A. N.
    Shamberger, P. J.
    Hu, J. J.
    Muratore, C.
    Bultman, J. E.
    Voevodin, A. A.
    THIN SOLID FILMS, 2015, 579 : 30 - 37
  • [25] Wear and corrosion resistance of CrN/TiN superlattice coatings deposited by a combined deep oscillation magnetron sputtering and pulsed dc magnetron sputtering
    Ou, Y. X.
    Lin, J.
    Tong, S.
    Che, H. L.
    Sproul, W. D.
    Lei, M. K.
    APPLIED SURFACE SCIENCE, 2015, 351 : 332 - 343
  • [26] Microstructure and Properties of the Cr–Si–N Coatings Deposited by Combining High-Power Impulse Magnetron Sputtering(HiPIMS) and Pulsed DC Magnetron Sputtering
    Tie-Gang Wang
    Yu Dong
    Belachew Abera Gebrekidan
    Yan-Mei Liu
    Qi-Xiang Fan
    Kwang Ho Kim
    ActaMetallurgicaSinica(EnglishLetters), 2017, 30 (07) : 688 - 696
  • [27] Comparison of CrN Coatings Prepared Using High-Power Impulse Magnetron Sputtering and Direct Current Magnetron Sputtering
    Bai, Heda
    Li, Jin
    Gao, Jialai
    Ni, Jinyang
    Bai, Yaxiong
    Jian, Jie
    Zhao, Lin
    Bai, Bowen
    Cai, Zeyun
    He, Jianchao
    Chen, Hongsheng
    Leng, Xuesong
    Liu, Xiangli
    MATERIALS, 2023, 16 (18)
  • [28] Microstructure and Properties of the Cr–Si–N Coatings Deposited by Combining High-Power Impulse Magnetron Sputtering (HiPIMS) and Pulsed DC Magnetron Sputtering
    Tie-Gang Wang
    Yu Dong
    Belachew Abera Gebrekidan
    Yan-Mei Liu
    Qi-Xiang Fan
    Kwang Ho Kim
    Acta Metallurgica Sinica (English Letters), 2017, 30 : 688 - 696
  • [29] Microstructures and optoelectronic properties of CuxO films deposited by high-power impulse magnetron sputtering
    Sun, Hui
    Wen, Chao-Kuang
    Chen, Sheng-Chi
    Chuang, Tung-Han
    Yazdi, Mohammad Arab Pour
    Sanchette, Frederic
    Billard, Alain
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 672 - 678
  • [30] Microstructures and optoelectronic properties of CuxO films deposited by high-power impulse magnetron sputtering
    Chen, Sheng-Chi (chensc@mail.mcut.edu.tw), 1600, Elsevier Ltd (688):