On shortest path problems with "non-Markovian" link contribution to path lengths

被引:0
|
作者
Sen, A [1 ]
Candan, KS
Ferreira, A
Beauquier, B
Perennes, S
机构
[1] Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
[2] UNSA, INRIA, CNRS, SLOOP, F-06902 Sophia Antipollis, France
来源
NETWORKING 2000 | 2000年 / 1815卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we introduce a new class of shortest path problems, where the contribution of a link to the path length computation depends not only on the weight of that link but also on the weights of the links already traversed. This class of problems may be viewed as "non-Markovian". We consider a specific problem that belong to this class, which is encountered in the multimedia data transmission domain. We consider this problem under different conditions and develop algorithms. The shortest path problem in multimedia data transmission environment can be solved in O(n(2)) or O(n(3)) computational time.
引用
收藏
页码:859 / 870
页数:12
相关论文
共 50 条
  • [21] Recoverable robust shortest path problems
    Buesing, Christina
    NETWORKS, 2012, 59 (01) : 181 - 189
  • [22] On the Shortest Path Problems with Edge Constraints
    Ferone, Daniele
    Festa, Paola
    Fugaro, Serena
    Pastore, Tommaso
    2020 22ND INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2020), 2020,
  • [23] Stochastic shortest path problems with recourse
    Polychronopoulos, GH
    Tsitsiklis, JN
    NETWORKS, 1996, 27 (02) : 133 - 143
  • [24] Shortest Path Problems on a Polyhedral Surface
    Cook, Atlas F.
    Wenk, Carola
    ALGORITHMICA, 2014, 69 (01) : 58 - 77
  • [25] Shortest Path Problems on a Polyhedral Surface
    Atlas F. Cook
    Carola Wenk
    Algorithmica, 2014, 69 : 58 - 77
  • [26] Influence of the link weight structure on the shortest path
    Van Mieghem, P
    van Langen, S
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [27] Shortest path problems with time constraints
    Cai, X
    Kloks, T
    Wong, CK
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 1996, 1996, 1113 : 255 - 266
  • [28] Shortest Path Problems on a Polyhedral Surface
    Cook, Atlas F.
    Wenk, Carola
    ALGORITHMS AND DATA STRUCTURES, 2009, 5664 : 156 - 167
  • [29] On solving dynamic shortest path problems
    Nasrabadi, Ebrahim
    Hashemi, S. Mehdi
    20TH INTERNATIONAL CONFERENCE, EURO MINI CONFERENCE CONTINUOUS OPTIMIZATION AND KNOWLEDGE-BASED TECHNOLOGIES, EUROPT'2008, 2008, : 48 - 53
  • [30] On the difficulty of some shortest path problems
    Hershberger, J
    Suri, S
    Bhosle, A
    STACS 2003, PROCEEDINGS, 2003, 2607 : 343 - 354