On shortest path problems with "non-Markovian" link contribution to path lengths

被引:0
|
作者
Sen, A [1 ]
Candan, KS
Ferreira, A
Beauquier, B
Perennes, S
机构
[1] Arizona State Univ, Dept Comp Sci & Engn, Tempe, AZ 85287 USA
[2] UNSA, INRIA, CNRS, SLOOP, F-06902 Sophia Antipollis, France
来源
NETWORKING 2000 | 2000年 / 1815卷
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we introduce a new class of shortest path problems, where the contribution of a link to the path length computation depends not only on the weight of that link but also on the weights of the links already traversed. This class of problems may be viewed as "non-Markovian". We consider a specific problem that belong to this class, which is encountered in the multimedia data transmission domain. We consider this problem under different conditions and develop algorithms. The shortest path problem in multimedia data transmission environment can be solved in O(n(2)) or O(n(3)) computational time.
引用
收藏
页码:859 / 870
页数:12
相关论文
共 50 条
  • [1] PATH INTEGRAL SOLUTIONS FOR NON-MARKOVIAN PROCESSES
    HANGGI, P
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (02): : 275 - 281
  • [2] Complexity of Some Inverse Shortest Path Lengths Problems
    Cui, Tingting
    Hochbaum, Dorit S.
    NETWORKS, 2010, 56 (01) : 20 - 29
  • [3] PATH-INTEGRALS FOR NON-MARKOVIAN PROCESSES
    PESQUERA, L
    RODRIGUEZ, MA
    SANTOS, E
    PHYSICS LETTERS A, 1983, 94 (6-7) : 287 - 289
  • [4] Link Distance and Shortest Path Problems in the Plane
    Cook, Atlas F.
    Wenk, Carola
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 2009, 5564 : 140 - 151
  • [5] Link distance and shortest path problems in the plane
    Cook, Atlas F.
    Wenk, Carola
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (08): : 442 - 455
  • [6] Shortest path problem with cache dependent path lengths
    Fu, Z
    Kurnia, A
    Lim, A
    Rodrigues, B
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 2756 - 2761
  • [7] Transition Path Times in Non-Markovian Activated Rate Processes
    Medina, Eduardo
    Satija, Rohit
    Makarov, Dmitrii E.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (49): : 11400 - 11413
  • [8] Shortest path problem with uncertain arc lengths
    Gao, Yuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (06) : 2591 - 2600
  • [9] Transition path properties for one-dimensional non-Markovian models
    Li, Hua
    Xu, Yong
    Metzler, Ralf
    Shen, Jianwei
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (35)
  • [10] SHORTEST PATH PROBLEMS IN HYDROGEOLOGY
    THOMAS, RG
    GROUND WATER, 1978, 16 (05) : 334 - 340