Matrix Mittag-Leffler function in fractional systems and its computation

被引:10
|
作者
Matychyn, I. [1 ]
Onyshchenko, V. [2 ]
机构
[1] Univ Warmia & Mazury, Fac Math & Comp Sci, 54 Sloneczna St, PL-10710 Olsztyn, Poland
[2] State Univ Telecommun, 7 Solomyanska St, UA-03110 Kiev, Ukraine
关键词
matrix Mittag-Leffler function; Jordan canonical form; fractional calculus; fractional differential equation; LINEAR-SYSTEMS;
D O I
10.24425/124266
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Matrix Mittag-Leffler functions play a key role in numerous applications related to systems with fractional dynamics. That is why the methods for computing the matrix Mittag-Leffler function are so important. The matrix Mittag-Leffler function is a generalization of matrix exponential function. This implies that some of numerous existing methods for computing the matrix exponential can be adapted for matrix Mittag-Leffler functions as well. Unfortunately, the technique of scaling and squaring, widely used in computing of the matrix exponential, cannot be applied to matrix Mittag-Leffler functions, as the latter do not possess the semigroup property. Here we describe a method of computing the matrix Mittag-Leffler function based on the Jordan canonical form representation. This method is implemented with MATLAB code [1].
引用
收藏
页码:495 / 500
页数:6
相关论文
共 50 条
  • [21] Computing Enclosures for the Matrix Mittag-Leffler Function
    Miyajima, Shinya
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
  • [22] Matrix Mittag-Leffler functions of fractional nabla calculus
    Jonnalagadda, Jagan Mohan
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (02): : 128 - 140
  • [23] On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation
    Camargo, Rubens Figueiredo
    de Oliveira, Edmundo Capelas
    Vaz, Jayme, Jr.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (01) : 1 - 16
  • [24] Fractional Integrations of a Generalized Mittag-Leffler Type Function and Its Application
    Nisar, Kottakkaran Sooppy
    MATHEMATICS, 2019, 7 (12)
  • [25] Synchronization of Fractional Stochastic Chaotic Systems via Mittag-Leffler Function
    Sathiyaraj, T.
    Feckan, Michal
    Wang, JinRong
    FRACTAL AND FRACTIONAL, 2022, 6 (04)
  • [26] On the Generalized Mittag-Leffler Function and its Application in a Fractional Telegraph Equation
    Rubens Figueiredo Camargo
    Edmundo Capelas de Oliveira
    Jayme Vaz
    Mathematical Physics, Analysis and Geometry, 2012, 15 : 1 - 16
  • [27] On generalized fractional integral with multivariate Mittag-Leffler function and its applications
    Nazir, Amna
    Rahman, Gauhar
    Ali, Asad
    Naheed, Saima
    Nisar, Kottakkaran Soopy
    Albalawi, Wedad
    Zahran, Heba Y.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (11) : 9187 - 9201
  • [28] ON FRACTIONAL MITTAG-LEFFLER OPERATORS
    Ansari, Alireza
    Darani, Mohammadreza Ahmadi
    Moradi, Mohammad
    REPORTS ON MATHEMATICAL PHYSICS, 2012, 70 (01) : 119 - 131
  • [29] The extended Mittag-Leffler function via fractional calculus
    Rahman, Gauhar
    Baleanu, Dumitru
    Al Qurashi, Maysaa
    Purohit, Sunil Dutt
    Mubeen, Shahid
    Arshad, Muhammad
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (08): : 4244 - 4253
  • [30] CERTAIN FRACTIONAL OPERATORS OF EXTENDED MITTAG-LEFFLER FUNCTION
    Nadir, Aneela
    Khan, Adnan
    JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2019, 10 (01): : 12 - 26