An improved lower bound on the independence number of a graph

被引:4
|
作者
Henning, Michael A. [1 ]
Loewenstein, Christian [2 ]
机构
[1] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
[2] Univ Ulm, Inst Optimizat & Operat Res, D-89081 Ulm, Germany
基金
新加坡国家研究基金会;
关键词
Independence; Vertex-cover; MAXIMUM DEGREE; TERMS; SIZE; DOMINATION; ORDER;
D O I
10.1016/j.dam.2014.07.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The independence number of a graph G, denoted alpha(G), is the maximum cardinality of an independent set of vertices in G. Our main result is the strengthening of a lower bound for the independence number of a graph due to Lowenstein'et al. (2011) who proved that if G is a connected graph of order n and size m, then alpha(G) >= 2/3 n- 1/4m - 1/3. We show that if G does not belong to a specific family of graphs, then alpha(G) > in 2/3n - 1/4m. Further, we characterize the graphs G for which alpha(G) <= 2/3n - 1/4 m. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 128
页数:9
相关论文
共 50 条
  • [31] SPECTRAL UPPER BOUND ON THE QUANTUM K-INDEPENDENCE NUMBER OF A GRAPH
    Wocjan, Pawel
    Elphick, Clive
    Abiad, Aida
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2022, 38 : 331 - 338
  • [32] An improved lower bound on the sensitivity complexity of graph properties
    Sun, Xiaoming
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (29) : 3524 - 3529
  • [33] A CHARACTERIZATION OF TREES FOR A NEW LOWER BOUND ON THE k-INDEPENDENCE NUMBER
    Meddah, Nacera
    Blidia, Mostafa
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (02) : 395 - 410
  • [34] THE SHARP LOWER BOUND FOR THE SPECTRAL RADIUS OF CONNECTED GRAPHS WITH THE INDEPENDENCE NUMBER
    Jin, Ya-Lei
    Zhang, Xiao-Dong
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 419 - 431
  • [35] A Lower Bound for the Algebraic Connectivity of a Graph in Terms of the Domination Number
    Yi-Zheng Fan
    Ying-Ying Tan
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 752 - 760
  • [36] A lower bound for the chromatic capacity in terms of the chromatic number of a graph
    Zhou, Bing
    DISCRETE MATHEMATICS, 2013, 313 (20) : 2146 - 2149
  • [37] A lower bound on the Hamiltonian path completion number of a line graph
    Detti, Paolo
    Meloni, Carlo
    Pranzo, Marco
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 296 - 304
  • [38] The travelling preacher, projection, and a lower bound for the stability number of a graph
    Cameron, Kathie
    Edmonds, Jack
    DISCRETE OPTIMIZATION, 2008, 5 (02) : 290 - 292
  • [39] A lower bound for the complex flow number of a graph: A geometric approach
    Mattiolo, Davide
    Mazzuoccolo, Giuseppe
    Rajnik, Jozef
    Tabarelli, Gloria
    JOURNAL OF GRAPH THEORY, 2024, 106 (02) : 239 - 256
  • [40] A Lower Bound for the Algebraic Connectivity of a Graph in Terms of the Domination Number
    Fan, Yi-Zheng
    Tan, Ying-Ying
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 752 - 760