Tuning valley polarization in two-dimensional ferromagnetic heterostructures

被引:6
|
作者
Sun, Yu-Yun [1 ,2 ]
Shang, Liyan [1 ]
Ju, Weiwei [3 ]
An, Yi-Peng [4 ]
Gong, Shi-Jing [1 ,2 ]
Wang, Ji-Qing [1 ]
机构
[1] East China Normal Univ, Dept Elect, Key Lab Polar Mat & Devices MOE, Shanghai 200241, Peoples R China
[2] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[3] Henan Univ Sci & Technol, Coll Phys & Engn, Luoyang 471023, Peoples R China
[4] Henan Normal Univ, Henan Key Lab Boron Chem & Adv Energy Mat, Coll Phys & Mat Sci, Xinxiang 453007, Henan, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
MONOLAYER; CRYSTAL; WSE2; SPIN;
D O I
10.1039/c9tc04511b
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two-dimensional (2D) heterostructures can generate new properties that are not possessed in their constituents. Monolayer transition metal dichalcogenides (TMDs) MX2 (M = Mo, W; X = Se, Te) are an ideal system to produce the valley degree of freedom, furthermore, the magnetic proximity effect in MX2/Cr2Ge2Te6 heterostructures can lift the valley degeneracy and produce nonvolatile valley polarization (VP). Taking the WSe2/Cr2Ge2Te6 heterostructure as an example, we demonstrate that the normal strain can modify the magnetic proximity effect and tune the VP. In addition, comparing the different MX2/Cr2Ge2Te6 heterostructures, we find that the VP not only relies on the transition metal atom M, but also depends on the super-super exchange "-X-Te-" which connects the M atom and the magnetic Cr atom. The induced VP in MX2 follows the sequence: WTe2 > WSe2 > MoTe2 > MoSe2. Our investigation reveals the tunability of VP in MX2/Cr2Ge2Te6 heterostructures, which will be of great significance in valleytronics.
引用
收藏
页码:14932 / 14937
页数:6
相关论文
共 50 条
  • [41] Valley polarization and magnetic anisotropy of two-dimensional Ni2Cl3I3/MoSe2 heterostructures
    Chen, Bo
    Zhou, Baozeng
    Wang, Xiaocha
    NANOSCALE, 2024, 16 (25) : 12196 - 12206
  • [42] Reversible tuning of two-dimensional electron gases in oxide heterostructures by chemical surface modification
    Lee, H.
    Campbell, N.
    Ryu, S.
    Chang, W.
    Irwin, J.
    Lindemann, S.
    Mahanthappa, M. K.
    Rzchowski, M. S.
    Eom, C. B.
    APPLIED PHYSICS LETTERS, 2016, 109 (19)
  • [43] Catalysis with two-dimensional materials and their heterostructures
    Deng, Dehui
    Novoselov, K. S.
    Fu, Qiang
    Zheng, Nanfeng
    Tian, Zhongqun
    Bao, Xinhe
    NATURE NANOTECHNOLOGY, 2016, 11 (03) : 218 - 230
  • [44] Two-dimensional metamaterials for epitaxial heterostructures
    Zhou, H.
    Chisholm, M. F.
    Gupta, A.
    Pennycook, S. J.
    Narayan, J.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2014, 18 (01): : 46 - 52
  • [45] Two-dimensional colloidal crystal heterostructures
    Xue, Fei
    Asher, Sanford A.
    Meng, Zihui
    Wang, Fengyan
    Lu, Wei
    Xue, Min
    Qi, Fenglian
    RSC ADVANCES, 2015, 5 (24) : 18939 - 18944
  • [46] Thermal Transport in Two-Dimensional Heterostructures
    Chen, Xue-Kun
    Zeng, Yu-Jia
    Chen, Ke-Qiu
    FRONTIERS IN MATERIALS, 2020, 7
  • [47] Nonlinear optics of two-dimensional heterostructures
    Zeng, Xiangkun
    Wan, Chenyu
    Zhao, Zhichen
    Huang, Di
    Wang, Zhanshan
    Cheng, Xinbin
    Jiang, Tao
    FRONTIERS OF PHYSICS, 2024, 19 (03)
  • [48] Two-dimensional heterostructures for energy storage
    Pomerantseva, Ekaterina
    Gogotsi, Yury
    NATURE ENERGY, 2017, 2 (07):
  • [49] Ionically Conducting Two-Dimensional Heterostructures
    Guo, Xiangxin
    Maier, Joachim
    ADVANCED MATERIALS, 2009, 21 (25-26) : 2619 - 2631
  • [50] From two-dimensional materials to heterostructures
    Niu, Tianchao
    Li, Ang
    PROGRESS IN SURFACE SCIENCE, 2015, 90 (01) : 21 - 45