Gas separation mechanism of CO2 selective amidoxime-poly(1-trimethylsilyl-1-propyne) membranes

被引:25
|
作者
Feng, Hongbo [1 ]
Hong, Tao [1 ]
Mahurin, Shannon M. [2 ]
Vogiatzis, Konstantinos D. [1 ]
Gmernicki, Kevin R. [1 ]
Long, Brian K. [1 ]
Mays, Jimmy W. [1 ,2 ]
Sokolov, Alexei P. [1 ,2 ]
Kang, Nam-Goo [1 ]
Saito, Tomonori [2 ]
机构
[1] Univ Tennessee, Dept Chem, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Chem Sci Div, Oak Ridge, TN 37831 USA
关键词
INTRINSIC MICROPOROSITY PIMS; BETA-HYDROSILYLATION; TRANSPORT; POLYMER; PERMEABILITY; SORPTION; DENSITY; PERFORMANCE; AMIDOXIMES; CATALYST;
D O I
10.1039/c7py00056a
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polymeric membranes for CO2 separation have drawn significant attention in academia and industry. We prepared amidoxime-functionalized poly(1-trimethylsilyl-1-propyne) (AO-PTMSP) membranes through hydrosilylation and post-polymerization modification. Compared to neat PTMSP membranes, the AO-PTMSP membranes showed significant enhancements in CO2/N-2 gas separation performance (CO2 permeability similar to 6000 Barrer; CO2/N-2 selectivity similar to 17). This systematic study provides clear guidelines on how to tune the CO2-philicity within PTMSP matrices and the effects on gas selectivity. Key parameters for elucidating the gas transport mechanism were discussed based on CO2 sorption measurements and fractional free volume estimates. The effect of the AO content on CO2/N-2 selectivity was further examined by means of density functional theory calculations. Both experimental and theoretical data provide consistent results that conclusively show that CO2/N-2 separation performance is enhanced by increased CO2-polymer interactions.
引用
收藏
页码:3341 / 3350
页数:10
相关论文
共 50 条
  • [31] Gas transport properties of MgO filled poly (1-trimethylsilyl-1-propyne) nanocomposites
    Matteucci, Scott
    Kusuma, Victor A.
    Kelman, Scott D.
    Freeman, Benny D.
    POLYMER, 2008, 49 (06) : 1659 - 1675
  • [32] Rheological properties of poly(1-trimethylsilyl-1-propyne) solutions
    G. B. Vasilyev
    M. V. Mironova
    E. G. Litvinova
    V. V. Volkov
    V. S. Khotimskii
    V. G. Kulichikhin
    Polymer Science Series A, 2013, 55 : 510 - 517
  • [33] IR dichroism of poly(1-trimethylsilyl-1-propyne) films
    Khodzhaeva, V.L.
    Zaikin, V.G.
    Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C - Kratkie Soobshcheniya, 2004, 46 (01): : 96 - 101
  • [34] Synthesis and properties of brominated poly(1-trimethylsilyl-1-propyne)
    Polevaya, V. G.
    Bondarenko, G. N.
    Shandryuk, G. A.
    Dolzhikova, V. D.
    Khotimskiy, V. S.
    RUSSIAN CHEMICAL BULLETIN, 2016, 65 (04) : 1067 - 1071
  • [35] Preferential permeability of methanol into water using polysilicone and poly(1-trimethylsilyl-1-propyne) membranes
    Bofinger, Anna
    Drake, Javit A.
    JOURNAL OF MEMBRANE SCIENCE, 2006, 285 (1-2) : 282 - 289
  • [36] How is mixed-gas permeation through poly(1-trimethylsilyl-1-propyne) membranes influenced by elevated temperatures?
    Logemann, M.
    Alders, M.
    Pyankova, V.
    Krakau, D.
    Wessling, M.
    JOURNAL OF MEMBRANE SCIENCE, 2020, 615
  • [37] Sorption, diffusion, and permeation of ethylbenzene in poly(1-trimethylsilyl-1-propyne)
    Dixon-Garrett, S.V.
    Nagai, K.
    Freeman, B.D.
    2000, John Wiley & Sons Inc, New York, NY, United States (38)
  • [38] EFFECTS OF AGING ON THE GAS-PERMEABILITY AND SOLUBILITY IN POLY(1-TRIMETHYLSILYL-1-PROPYNE) MEMBRANES SYNTHESIZED WITH VARIOUS CATALYSTS
    NAGAI, K
    NAKAGAWA, T
    JOURNAL OF MEMBRANE SCIENCE, 1995, 105 (03) : 261 - 272
  • [39] Chromatographic properties and polarity evaluation of poly(1-trimethylsilyl-1-propyne) and poly(1-phenyl-1-propyne)
    E. Yu. Yakovleva
    V. Yu. Belotserkovskaya
    Journal of Analytical Chemistry, 2010, 65 : 1014 - 1020
  • [40] Gas permeation properties of blend and copolymer membranes composed of 1-trimethylsilyl-1-propyne and 1-phenyl-1-propyne structures
    Meiji Univ Higashi-mita, Kawasaki, Japan
    J Polym Sci Part B, 1 (119-131):