Analysis of the ferrofluid microstructure based on the static magnetic measurements

被引:10
|
作者
Sokolsky, Sergey A. [1 ]
Solovyova, Anna Yu. [1 ]
Zverev, Vladimir S. [1 ]
Hess, Melissa [2 ,3 ]
Schmidt, Annette [2 ]
Elfimova, Ekaterina A. [1 ]
机构
[1] Ural Fed Univ, Ural Math Ctr, Lenin Str 51, Ekaterinburg 620000, Russia
[2] Univ Cologne, Fac Math & Nat Sci, Inst Phys Chem, Luxemburger Str 116, D-50939 Cologne, Germany
[3] Forschungszentrum Julich GmbH, IHRS BioSoft, Inst Complex Syst, D-52428 Julich, Germany
基金
俄罗斯基础研究基金会;
关键词
Ferrofluid; Polydispersity; Magnetization; Magnetogranulometric analysis; Aggregates; Distribution function; PHYSICAL PARAMETERS;
D O I
10.1016/j.jmmm.2021.168169
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we applied regularized inversion method [New J. Phys. 19, 073012 (2017)] for microstructure analysis of 10 ferrofluid samples with different ferroparticle concentrations, which were obtained by diluting of the first one. The experimental measurements of the magnetization M(H) of all samples were subjected to numerical inversion using 120 ferroparticle fractions. Since volume concentration of ferrofluid samples does not exceed 3%, the properties of each fraction were described using Langevin theory. The magnetogranulomertic analysis confirmed that all 10 samples have the same magnetic moment distribution function, which has two peaks. The first (small) peak in the magnetic moment distribution function demonstrates the presence of a certain number of aggregates or correlated ferroparticle structures in the samples, whose magnetic moments have been compensated. The second peak corresponds to ordinary single particles distributed in the sample. The main advantage of using numerical inversion method is the absence of an a priori fixed form of the distribution function instead of a standard log-normal or Gamma-distribution.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] MAGNETOCRYSTALLINE ANISOTROPY MEASUREMENTS IN STATIC OR QUASI-STATIC MAGNETIC-FIELDS
    BOLZONI, F
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1993, 64 (06): : 1569 - 1575
  • [42] MEASUREMENTS OF TURBULENCE SUPPRESSION DUE TO A TRANSVERSE MAGNETIC-FIELD APPLIED ON A FERROFLUID MOTION
    ANTON, AI
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1990, 85 (1-3) : 137 - 140
  • [43] Analysis of a static scheme of ellipsometric measurements
    V. A. Shvets
    E. V. Spesivtsev
    S. V. Rykhlitskii
    Optics and Spectroscopy, 2004, 97 : 483 - 494
  • [44] Analysis of a static scheme of ellipsometric measurements
    Shvets, VA
    Spesivtsev, EV
    Rykhiltskii, SV
    OPTICS AND SPECTROSCOPY, 2004, 97 (03) : 483 - 494
  • [45] APPLICATION OF FLUCTUATION THEORY TO STATIC MEASUREMENTS OF MAGNETIC SUSCEPTIBILITIES
    POULIS, JA
    PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1962, 80 (516): : 918 - &
  • [46] Electron paramagnetic resonance measurements of static magnetic susceptibility
    Cherkasov, FG
    Ovchinnikov, IV
    Turanov, AN
    Lvov, SG
    Goncharov, VA
    Vitols, AY
    LOW TEMPERATURE PHYSICS, 1997, 23 (02) : 174 - 176
  • [47] Static magnetic field measurements in the research workplace.
    Farmer, S
    Mays, TL
    HEALTH PHYSICS, 2003, 84 (06): : S178 - S178
  • [48] Electron paramagnetic resonance measurements of static magnetic susceptibility
    Kazan' Physicotechnical Institute, Russian Academy of Sciences, 420029 Kazan', Russia
    不详
    Low Temp. Phys, 2 (174-176):
  • [49] Elimination of distortions in static magnetic field distribution measurements
    Andris, P.
    Frollo, I.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2008, (02) : 9 - 12
  • [50] Magnetic noise of a frozen ferrofluid
    Komatsu, K.
    L'Hote, D.
    Nakamae, S.
    Ladieu, F.
    Mosser, V.
    Kerlain, A.
    Konczykowski, M.
    Dubois, E.
    Dupuis, V.
    Perzynski, R.
    JOURNAL OF APPLIED PHYSICS, 2010, 107 (09) : 191