Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition

被引:19
|
作者
Ellinghaus, Paul [1 ]
Weinbub, Josef [1 ]
Nedjalkov, Mihail [1 ]
Selberherr, Siegfried [1 ]
Dimov, Ivan [2 ]
机构
[1] TU Wien, Inst Microelect, Vienna, Austria
[2] Bulgarian Acad Sci, IICT, Sofia, Bulgaria
基金
奥地利科学基金会;
关键词
Wigner; Monte Carlo; Message passing interface; Domain decomposition; Parallel; Memory-distributed; TRANSPORT;
D O I
10.1007/s10825-014-0635-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Wigner Monte Carlo method, based on the generation and annihilation of particles, has emerged as a promising approach to treat transient problems of quantum electron transport in nanostructures. Tackling these simulations in multiple spatial dimensions demands a parallelized approach to facilitate a practical application of the method in order to investigate realistic problems, due to the otherwise exorbitant execution-times and memory requirements. Because of the annihilation step, a straight-forward parallelization of the Wigner Monte Carlo code is not possible, since sub-ensembles of particles can not be treated independently. Moreover, the large memory requirements of the annihilation procedure presents challenges when working in a distributed-memory setting. A solution to this problem is presented here with a parallelization approach using a spatial domain decomposition, implemented using the message passing interface. The presented benchmark results, based on standard one-dimensional examples, exhibit a good efficiency in the scalability of not only speed, but also memory consumption, which is paramount for the simulation of realistic devices.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 50 条
  • [21] PARALLELIZATION OF A MULTILEVEL DOMAIN DECOMPOSITION METHOD
    ESCAIG, Y
    TOUZOT, G
    VAYSSADE, M
    COMPUTING SYSTEMS IN ENGINEERING, 1994, 5 (03): : 253 - 263
  • [22] A DOMAIN DECOMPOSITION PARALLELIZATION STRATEGY FOR MOLECULAR-DYNAMICS SIMULATIONS ON DISTRIBUTED MEMORY MACHINES
    BROWN, D
    CLARKE, JHR
    OKUDA, M
    YAMAZAKI, T
    COMPUTER PHYSICS COMMUNICATIONS, 1993, 74 (01) : 67 - 80
  • [23] A sensitivity study of the Wigner Monte Carlo method
    Sellier, J. M.
    Dimov, I.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 277 : 87 - 93
  • [24] A benchmark study of the Wigner Monte Carlo method
    Sellier, Jean Michel
    Nedjalkov, Mihail
    Dimov, Ivan
    Selberherr, Siegfried
    MONTE CARLO METHODS AND APPLICATIONS, 2014, 20 (01): : 43 - 51
  • [25] Massively Parallel Polar Decomposition on Distributed-memory Systems
    Ltaief, Hatem
    Sukkari, Dalal
    Esposito, Aniello
    Nakatsukasa, Yuji
    Keyes, David
    ACM TRANSACTIONS ON PARALLEL COMPUTING, 2019, 6 (01)
  • [26] Direct domain decomposition method on a distributed memory architecture
    Lassignardie, JF
    Escaig, Y
    Touzot, G
    ADVANCES IN COMPUTATIONAL MECHANICS WITH HIGH PERFORMANCE COMPUTING, 1998, : 65 - 72
  • [27] Parallelization of the FMM on distributed-memory GPGPU systems for acoustic-scattering prediction
    Lopez-Portugues, Miguel
    Lopez-Fernandez, Jesus A.
    Ranilla, Jose
    Ayestaran, R. G.
    Las-Heras, Fernando
    JOURNAL OF SUPERCOMPUTING, 2013, 64 (01): : 17 - 27
  • [28] Parallelization of the FMM on distributed-memory GPGPU systems for acoustic-scattering prediction
    Miguel López-Portugués
    Jesús A. López-Fernández
    José Ranilla
    R. G. Ayestarán
    Fernando Las-Heras
    The Journal of Supercomputing, 2013, 64 : 17 - 27
  • [29] Study on domain decomposition method for Monte Carlo simulation of neutron transport
    Liang, Jin-Gang, 1600, Atomic Energy Press (48):
  • [30] Maintaining spatial data sets in distributed-memory machines
    Hambrusch, SE
    Khokhar, AA
    11TH INTERNATIONAL PARALLEL PROCESSING SYMPOSIUM, PROCEEDINGS, 1997, : 702 - 707