Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition

被引:19
|
作者
Ellinghaus, Paul [1 ]
Weinbub, Josef [1 ]
Nedjalkov, Mihail [1 ]
Selberherr, Siegfried [1 ]
Dimov, Ivan [2 ]
机构
[1] TU Wien, Inst Microelect, Vienna, Austria
[2] Bulgarian Acad Sci, IICT, Sofia, Bulgaria
基金
奥地利科学基金会;
关键词
Wigner; Monte Carlo; Message passing interface; Domain decomposition; Parallel; Memory-distributed; TRANSPORT;
D O I
10.1007/s10825-014-0635-3
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Wigner Monte Carlo method, based on the generation and annihilation of particles, has emerged as a promising approach to treat transient problems of quantum electron transport in nanostructures. Tackling these simulations in multiple spatial dimensions demands a parallelized approach to facilitate a practical application of the method in order to investigate realistic problems, due to the otherwise exorbitant execution-times and memory requirements. Because of the annihilation step, a straight-forward parallelization of the Wigner Monte Carlo code is not possible, since sub-ensembles of particles can not be treated independently. Moreover, the large memory requirements of the annihilation procedure presents challenges when working in a distributed-memory setting. A solution to this problem is presented here with a parallelization approach using a spatial domain decomposition, implemented using the message passing interface. The presented benchmark results, based on standard one-dimensional examples, exhibit a good efficiency in the scalability of not only speed, but also memory consumption, which is paramount for the simulation of realistic devices.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 50 条
  • [1] Distributed-memory parallelization of the Wigner Monte Carlo method using spatial domain decomposition
    Paul Ellinghaus
    Josef Weinbub
    Mihail Nedjalkov
    Siegfried Selberherr
    Ivan Dimov
    Journal of Computational Electronics, 2015, 14 : 151 - 162
  • [2] Parallelization of the Two-Dimensional Wigner Monte Carlo Method
    Weinbub, Josef
    Ellinghaus, Paul
    Selberherr, Siegfried
    LARGE-SCALE SCIENTIFIC COMPUTING, LSSC 2015, 2015, 9374 : 309 - 316
  • [3] Domain decomposition strategies for the two-dimensional Wigner Monte Carlo Method
    Weinbub, Josef
    Ellinghaus, Paul
    Nedjalkov, Mihail
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2015, 14 (04) : 922 - 929
  • [4] The parallelization of SPIDER on distributed-memory computers using MPI
    Yang, Chao
    Penczek, Pawel A.
    Leith, ArDean
    Asturias, Francisco J.
    Ng, Esmond G.
    Glaeser, Robert M.
    Frank, Joachim
    JOURNAL OF STRUCTURAL BIOLOGY, 2007, 157 (01) : 240 - 249
  • [5] Domain decomposition strategies for the two-dimensional Wigner Monte Carlo Method
    Josef Weinbub
    Paul Ellinghaus
    Mihail Nedjalkov
    Journal of Computational Electronics, 2015, 14 : 922 - 929
  • [6] Distributed-memory parallelization of the aggregated unfitted finite element method
    Verdugo, Francesc
    Martin, Alberto F.
    Badia, Santiago
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 357
  • [7] A distributed-memory MPI parallelization scheme for multi-domain incompressible SPH
    Monteleone A.
    Burriesci G.
    Napoli E.
    Journal of Parallel and Distributed Computing, 2022, 170 : 53 - 67
  • [8] Parallelization of Multilevel ILU Preconditioners on Distributed-Memory Multiprocessors
    Aliaga, Jose I.
    Bollhoefer, Matthias
    Martin, Alberto F.
    Quintana-Orti, Enrique S.
    APPLIED PARALLEL AND SCIENTIFIC COMPUTING, PT I, 2012, 7133 : 162 - 172
  • [9] Probabilistic communication optimizations and parallelization for distributed-memory systems
    Mehofer, E
    Scholz, B
    NINTH EUROMICRO WORKSHOP ON PARALLEL AND DISTRIBUTED PROCESSING, PROCEEDINGS, 2001, : 186 - 192
  • [10] KNOWLEDGE-BASED PARALLELIZATION FOR DISTRIBUTED-MEMORY SYSTEMS
    CHAPMAN, BM
    HERBECK, HM
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 591 : 77 - 88