Thermal performance of modified melamine foam/graphene/paraffin wax composite phase change materials for solar-thermal energy conversion and storage

被引:120
|
作者
Cui, Wei [1 ]
Li, Xiangxuan [1 ]
Li, Xinyi [2 ]
Si, Tianyu [1 ]
Lu, Lin [3 ]
Ma, Ting [1 ]
Wang, Qiuwang [1 ]
机构
[1] Xi An Jiao Tong Univ, Key Lab Thermo Fluid Sci & Engn, MOE, Xian 710049, Shaanxi, Peoples R China
[2] Univ Minnesota, Dept Bioprod & Biosyst Engn, Minneapolis, MN 55455 USA
[3] Hong Kong Polytech Univ, Dept Bldg Environm & Energy Engn, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
Melamine foam; Graphene; Phase change materials; Thermal performance; Solar-thermal energy conversion and storage; NANOFLUIDS; FOAM; OPPORTUNITIES; CHALLENGES; SEPARATION; SPONGE;
D O I
10.1016/j.jclepro.2022.133031
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The development of phase change materials (PCMs) is hampered by issues like leakage, poor thermal conductivity, and poor light absorption. In this study, we innovatively combined modified melamine foam (MF) and graphene nanoparticle (GNP) to address these defects of PCMs in the solar-thermal energy system. The MF was modified to endow the solar-thermal energy conversion ability and superhydrophobic interface characteristics due to the polypyrrole (PPy) by the in-situ polymerization and the polymerized octadecylsiloxane (PODS) layer coating on the sponge skeleton. The composite PCMs consisting of the modified MF, paraffin wax (PW), and GNP were fabricated and exhibited good leakproof ability, high thermal conductivity, and excellent solar-thermal energy conversion capability. Results showed that due to the effects of the PPy and the PODS on the sponge skeleton structure, MF@PPy-PODS/PW composite PCMs showed a decrease in the mass loss ratio to less than 0.34% and an increase in the thermal conductivity of 0.33 W/m.K and the solar-thermal storage efficiency of 75.68%. Besides, adding GNP with higher concentrations impacted positively on the thermal conductivity and the solar-thermal energy conversion ability but negatively on the phase change enthalpies. MF@PPy-PODS/GNP3/PW composite PCMs increased the thermal conductivity to 0.59 W/m.K and the solar-thermal storage efficiency to 79.36% while decreasing the phase change enthalpy to 130.61 J/g. Furthermore, a thermoelectric conversion system driven by solar energy was developed to show the potential of composite PCMs for cleaner energy production. The open-circuit voltages of the MF@PPy-PODS/GNP3/PW composite PCMs achieved 0.78 and 0.91 V at 2 and 4 Sun, respectively. The open-circuit voltages remained for a period of time and slowly dropped without the simulated solar light irradiation. This study provided a potential strategy for the optimal performance of composite PCMs and their application in solar thermal systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Solar-thermal energy conversion and storage of super black carbon reinforced melamine foam aerogel for shape-stable phase change composites
    Xi, Shaobo
    Wang, Lingling
    Xie, Huaqing
    Yu, Wei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (23) : 12024 - 12035
  • [22] Paraffin/Palygorskite composite phase change materials for thermal energy storage
    Yang, Dan
    Shi, Silan
    Xiong, Lian
    Guo, Haijun
    Zhang, Hairong
    Chen, Xuefang
    Wang, Can
    Chen, Xinde
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2016, 144 : 228 - 234
  • [23] Scalable synthesis of paraffin@MoS2-melamine foam composite phase change materials with superior photo-thermal conversion and storage
    Yang, Mingzhao
    Dong, Hongsheng
    Sun, Keyan
    Kou, Yan
    Zhang, Lunxiang
    Zhao, Jiafei
    Song, Yongchen
    Shi, Quan
    Journal of Energy Storage, 2022, 56
  • [24] Scalable synthesis of paraffin@MoS2-melamine foam composite phase change materials with superior photo-thermal conversion and storage
    Yang, Mingzhao
    Dong, Hongsheng
    Sun, Keyan
    Kou, Yan
    Zhang, Lunxiang
    Zhao, Jiafei
    Song, Yongchen
    Shi, Quan
    JOURNAL OF ENERGY STORAGE, 2022, 56
  • [25] Paraffin/modified exfoliated graphite composite phase change materials with high performance and stability for thermal energy storage
    Yu, Menghuan
    Fang, Guihua
    Meng, Keke
    Sun, Pengbo
    Zhao, Maosen
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (03) : 675 - 687
  • [26] Paraffin/modified exfoliated graphite composite phase change materials with high performance and stability for thermal energy storage
    Menghuan Yu
    Guihua Fang
    Keke Meng
    Pengbo Sun
    Maosen Zhao
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 675 - 687
  • [27] Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion
    Ren, Huaying
    Tang, Miao
    Guan, Baolu
    Wang, Kexin
    Yang, Jiawei
    Wang, Feifan
    Wang, Mingzhan
    Shan, Jingyuan
    Chen, Zhaolong
    Wei, Di
    Peng, Hailin
    Liu, Zhongfan
    ADVANCED MATERIALS, 2017, 29 (38)
  • [28] RESEARCH ON THERMAL ENERGY STORAGE AND RELEASE CHARACTERISTICS OF FOAM ALUMINUM PARAFFIN COMPOSITE PHASE CHANGE MATERIALS
    Zhou, Y.
    Wang, Z.
    Yang, C.
    Zhang, L.
    Hao, K.
    JOURNAL OF OVONIC RESEARCH, 2018, 14 (01): : 35 - 47
  • [29] Polyurethane template-based erythritol/graphite foam composite phase change materials with enhanced thermal conductivity and solar-thermal energy conversion efficiency
    Wang, Kunyin
    Sun, Chengyu
    Biney, Bernard Wiafe
    Li, Weining
    Al-shiaani, Nabil. H. A.
    Chen, Kun
    Liu, Dong
    Guo, Aijun
    POLYMER, 2022, 256
  • [30] CNTs composite aerogel incorporating phase-change microcapsules for solar-thermal conversion and energy storage
    Han, Zhisong
    Du, Danfeng
    Zhang, Fengmei
    CARBON, 2025, 237