Ground-state entanglement in interacting bosonic graphs

被引:13
|
作者
Giorda, P
Zanardi, P
机构
[1] Inst Sci Interchange, I-10133 Turin, Italy
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[3] Politecn Torino, Ist Nazl Fis Mat, UdR, I-10129 Turin, Italy
来源
EUROPHYSICS LETTERS | 2004年 / 68卷 / 02期
关键词
D O I
10.1209/epl/i2004-10129-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a collection of bosonic modes corresponding to the vertices of a graph Gamma. Quantum tunneling can occur only along the edges of Gamma and a local self-interaction term is present. Quantum entanglement of one vertex with respect to the rest of the graph ( mode entanglement) is analyzed in the ground state of the system as a function of the tunneling amplitude tau. The topology of Gamma plays a major role in determining the tunneling amplitude tau(max) that leads to the maximum value of the mode entanglement. Whereas in most of the cases one finds the intuitively expected result tau(max)=infinity, we show that there exists a family of graphs for which the optimal value of tau is pushed down to a finite value. We also show that, for complete graphs, our bi-partite entanglement provides useful insights in the analysis of the crossover between insulating and super fluid ground states.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 50 条
  • [21] Monogamy and ground-state entanglement in highly connected systems
    Ferraro, Alessandro
    Garcia-Saez, Artur
    Acin, Antonio
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [22] Connection Between Excited States and Ground-State Entanglement
    Shik, H. Y.
    Tian, G. S.
    Lin, H. Q.
    WOMEN IN PHYSICS, 2013, 1517 : 231 - 231
  • [23] Quasiparticle statistics and braiding from ground-state entanglement
    Zhang, Yi
    Grover, Tarun
    Turner, Ari
    Oshikawa, Masaki
    Vishwanath, Ashvin
    PHYSICAL REVIEW B, 2012, 85 (23)
  • [24] Ground-state instability in systems of strongly interacting fermions
    Artamonov, S.A.
    Pogorelov, Yu.G.
    Shaginyan, V.R.
    JETP Letters (Translation of Pis'ma v Zhurnal Eksperimental'noi Teoreticheskoi Fiziki), 1998, 68 (12):
  • [25] Multiparticle entanglement and the Schrodinger cat state using ground-state coherences
    Agarwal, GS
    Lougovski, P
    Walther, H
    JOURNAL OF MODERN OPTICS, 2005, 52 (10) : 1397 - 1404
  • [26] Ground-state instability in systems of strongly interacting fermions
    S. A. Artamonov
    V. R. Shaginyan
    Yu. G. Pogorelov
    Journal of Experimental and Theoretical Physics Letters, 1998, 68 : 942 - 949
  • [27] INVARIANT EXPANSION OF THE INTERACTING BIEXCITON GROUND-STATE IN CUBR
    HONERLAGE, B
    LEVY, R
    GRUN, JB
    PHYSICAL REVIEW B, 1981, 24 (06): : 3211 - 3219
  • [28] Entanglement between Rydberg excited state and ground-state spin wave
    Ding, Dong-Sheng
    Shi, Bao-Sen
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [29] MOMENT-METHOD ANALYSIS OF THE GROUND-STATE OF DISCRETIZED BOSONIC SYSTEMS
    HANDY, CR
    PEI, JQ
    PHYSICAL REVIEW A, 1988, 38 (07): : 3175 - 3181
  • [30] GROUND-STATE ENERGY OF A SYSTEM OF INTERACTING BOSE PARTICLES
    HIROOKA, M
    YAMASAKI, S
    PROGRESS OF THEORETICAL PHYSICS, 1982, 68 (04): : 1050 - 1069