The McKean-Vlasov Equation in Finite Volume

被引:35
|
作者
Chayes, L. [2 ]
Panferov, V. [1 ]
机构
[1] Calif State Univ Northridge, Dept Math, Northridge, CA 91330 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90059 USA
关键词
Phase transitions; Mean-field approximation; Kirkwood-Monroe equation; H-stability; LIQUID-VAPOR TRANSITION; WAALS-MAXWELL THEORY; LIMIT; SYSTEMS; VAN; SEGREGATION; INSTABILITY; DYNAMICS; MODEL;
D O I
10.1007/s10955-009-9913-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the McKean-Vlasov equation on the finite tori of length scale L in d-dimensions. We derive the necessary and sufficient conditions for the existence of a phase transition, which are based on the criteria first uncovered in Gates and Penrose (Commun. Math. Phys. 17: 194-209, 1970) and Kirkwood and Monroe (J. Chem. Phys. 9: 514-526, 1941). Therein and in subsequent works, one finds indications pointing to critical transitions at a particular model dependent value, theta(#) of the interaction parameter. We show that the uniform density (which may be interpreted as the liquid phase) is dynamically stable for theta < theta(#) and prove, abstractly, that a critical transition must occur at theta = theta(#). However for this system we show that under generic conditions-L large, d >= 2 and isotropic interactions-the phase transition is in fact discontinuous and occurs at some theta(T) < theta(#). Finally, for H-stable, bounded interactions with discontinuous transitions we show that, with suitable scaling, the theta(T)(L) tend to a definitive non-trivial limit as L -> infinity.
引用
收藏
页码:351 / 380
页数:30
相关论文
共 50 条
  • [21] MCKEAN-VLASOV SDEs IN NONLINEAR FILTERING
    Pathiraja, Sahani
    Reich, Sebastian
    Stannat, Wilhelm
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (06) : 4188 - 4215
  • [22] A STOCHASTIC MCKEAN-VLASOV EQUATION FOR ABSORBING DIFFUSIONS ON THE HALF-LINE
    Hambly, Ben
    Ledger, Sean
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (05): : 2698 - 2752
  • [23] Multilevel importance sampling for rare events associated with the McKean-Vlasov equation
    Ben Rached, Nadhir
    Haji-Ali, Abdul-Lateef
    Pillai, Shyam Mohan Subbiah
    Tempone, Raul
    STATISTICS AND COMPUTING, 2025, 35 (01)
  • [24] Semiparametric estimation of McKean-Vlasov SDEs
    Belomestny, Denis
    Pilipauskaite, Vytaute
    Podolskij, Mark
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (01): : 79 - 96
  • [25] Importance sampling for McKean-Vlasov SDEs
    dos Reis, Goncalo
    Smith, Greig
    Tankov, Peter
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 453
  • [26] Smoothing properties of McKean-Vlasov SDEs
    Crisan, Dan
    McMurray, Eamon
    PROBABILITY THEORY AND RELATED FIELDS, 2018, 171 (1-2) : 97 - 148
  • [27] Infinite-dimensional regularization of McKean-Vlasov equation with a Wasserstein diffusion
    Marx, Victor
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (04): : 2315 - 2353
  • [28] A stochastic particle method for McKean-Vlasov PDE's and the Burgers equation
    Bossy, M
    Talay, D
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 319 - 322
  • [29] McKean-Vlasov BSDEs with Locally Monotone Coefficient
    Boufoussi, Brahim
    Mouchtabih, Soufiane
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (07) : 1414 - 1424
  • [30] DERIVATIVE FORMULA FOR SINGULAR MCKEAN-VLASOV SDES
    Wang, Feng-yu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (06) : 1866 - 1898