Local rings of finite Cohen-Macaulay type

被引:24
|
作者
Wiegand, R [1 ]
机构
[1] Univ Nebraska, Dept Math, Lincoln, NE 68588 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jabr.1997.7319
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (R, m) be a local Cohen-Macaulay ring whose m-adic completion R has an isolated singularity. We verify the following conjecture of F.-O. Schreyer: R has finite Cohen-Macaulay type if and only if (R) over cap has finite Cohen-Macaulay type. We also show that the hypersurface k[[x(0),..,x(d)]]/(f) has finite Cohen-Macaulay type if and only if k(s)[[x(0),...,x(d)]]/(f) has finite Cohen-Macaulay type, where k(s) is the separable closure of the field k. (C) 1998 Academic Press.
引用
收藏
页码:156 / 168
页数:13
相关论文
共 50 条