Electrocatalysis for CO2 conversion: from fundamentals to value-added products

被引:813
|
作者
Wang, Genxiang [1 ,2 ,3 ]
Chen, Junxiang [1 ,2 ]
Ding, Yichun [1 ,2 ]
Cai, Pingwei [1 ,2 ,3 ]
Yi, Luocai [1 ,2 ,3 ]
Li, Yan [1 ,2 ,4 ]
Tu, Chaoyang [5 ]
Hou, Yang [4 ]
Wen, Zhenhai [1 ,2 ]
Dai, Liming [6 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Design & Assembly Funct Nanostruct, Fuzhou 350002, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, Fujian Prov Key Lab Nanomat, Fuzhou 350002, Fujian, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Zhejiang Univ, Key Lab Biomass Chem Engn, Minist Educ, Coll Chem & Biol Engn, Hangzhou 310027, Peoples R China
[5] Chinese Acad Sci, Fujian Inst Res Struct Matter, CAS Key Lab Optoelect Mat Chem & Phys, Fuzhou 350002, Fujian, Peoples R China
[6] Univ New South Wales, Australian Carbon Mat Ctr A CMC, Sch Chem Engn, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
CARBON-DIOXIDE REDUCTION; SELECTIVE ELECTROCHEMICAL REDUCTION; NITROGEN-DOPED CARBON; DENSITY-FUNCTIONAL THEORY; HIGHLY EFFICIENT ELECTROREDUCTION; HIGH FARADAIC EFFICIENCY; SINGLE-ATOM CATALYSTS; EARTH-ABUNDANT ELECTROCATALYSTS; ULTRATHIN BISMUTH NANOSHEETS; HYDROGEN EVOLUTION REACTION;
D O I
10.1039/d0cs00071j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The continuously increasing CO2 released from human activities poses a great threat to human survival by fluctuating global climate and disturbing carbon balance among the four reservoirs of the biosphere, earth, air, and water. Converting CO2 to value-added feedstocks via electrocatalysis of the CO2 reduction reaction (CO2RR) has been regarded as one of the most attractive routes to re-balance the carbon cycle, thanks to its multiple advantages of mild operating conditions, easy handling, tunable products and the potential of synergy with the rapidly increasing renewable energy (i.e., solar, wind). Instead of focusing on a special topic of electrocatalysts for the CO2RR that have been extensively reviewed elsewhere, we herein present a rather comprehensive review of the recent research progress, in the view of associated value-added products upon selective electrocatalytic CO2 conversion. We initially provide an overview of the history and the fundamental science regarding the electrocatalytic CO2RR, with a special introduction to the design, preparation, and performance evaluation of electrocatalysts, the factors influencing the CO2RR, and the associated theoretical calculations. Emphasis will then be given to the emerging trends of selective electrocatalytic conversion of CO2 into a variety of value-added products. The structure-performance relationship and mechanism will also be discussed and investigated. The outlooks for CO2 electrocatalysis, including the challenges and opportunities in the development of new electrocatalysts, electrolyzers, the recently rising operando fundamental studies, and the feasibility of industrial applications are finally summarized.
引用
收藏
页码:4993 / 5061
页数:69
相关论文
共 50 条
  • [31] Efficient, small catalytic reactor for CO2 conversion to value-added chemicals
    Hawley, Kyle
    Junaedi, Christian
    Roychoudhury, Subir
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [32] Transformation of CO2 to Value-Added Materials
    Khoo, Rebecca Shu Hui
    Luo, He-Kuan
    Braunstein, Pierre
    Hor, T. S. Andy
    JOURNAL OF MOLECULAR AND ENGINEERING MATERIALS, 2015, 3 (1-2)
  • [33] Progress and perspectives on microbial electrosynthesis for valorisation of CO2 into value-added products
    Thulluru, Lakshmi Pathi
    Ghangrekar, Makarand M.
    Chowdhury, Shamik
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 332
  • [34] A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products
    Yaashikaa, P. R.
    Kumar, P. Senthil
    Varjani, Sunita J.
    Saravanan, A.
    JOURNAL OF CO2 UTILIZATION, 2019, 33 : 131 - 147
  • [35] Sequestering of CO2 to Value-Added Products through Various Biological Processes
    Velvizhi G.
    Balakumar K.
    Dharanidharan S.
    ACS Symposium Series, 2019, 1329 : 261 - 284
  • [36] Photoelectrochemical Conversion of Methane into Value-Added Products
    Mehmood, Adeel
    Chae, Sang Youn
    Park, Eun Duck
    CATALYSTS, 2021, 11 (11)
  • [37] Conversion of agricultural residues into value-added products
    Cheng, H. N.
    Biswas, Atanu
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [38] Lignocellulosic conversion into value-added products: A review
    Haldar, Dibyajyoti
    Purkait, Mihir Kumar
    PROCESS BIOCHEMISTRY, 2020, 89 : 110 - 133
  • [39] The Catalyzed Conversion of Methane to Value-Added Products
    Zhao, Guangyu
    Drewery, Matthew
    Mackie, John
    Oliver, Tim
    Kennedy, Eric Miles
    Stockenhuber, Michael
    ENERGY TECHNOLOGY, 2020, 8 (08)
  • [40] Conversion of residues and by-products from the biodiesel industry into value-added products
    Plácido J.
    Capareda S.
    Bioresources and Bioprocessing, 3 (1)