Smartwatch-based Human Activity Recognition Using Hybrid LSTM Network

被引:60
|
作者
Mekruksavanich, Sakorn [1 ]
Jitpattanaku, Anuchit [2 ]
机构
[1] Univ Phayao, Sch Informat & Commun Technol, Dept Comp Engn, Phayao, Thailand
[2] King Mongkuts Univ Technol North Bangkok, Fac Appl Sci, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Bangkok, Thailand
来源
关键词
smartwatch; deep learning; human activity recognition; wearable devices; hybrid LSTM;
D O I
10.1109/sensors47125.2020.9278630
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As a result of the rapid development of wearable sensor technology, the use of smartwatch sensors for human activity recognition (HAR) has recently become a popular area of research. Currently, a large number of mobile applications, such as healthcare monitoring, sport performance tracking, etc., are applying the results of major HAR research studies. In this paper, an HAR framework that employs spatial-temporal features that are automatically extracted from data obtained from smartwatch sensors is proposed. The hybrid deep learning approach is used in the framework through the employment of Long Short-Term Memory Networks and the Convolutional Neural Network, eliminating the need for the manual extraction of features. The advantage of tuning the hyperparameters of each of the considered networks by Bayesian optimization is also utilized. It was indicated by the results that the baseline models are outperformed by the proposed hybrid deep learning model, which has an average accuracy of 96.2% and an F-measure of 96.3%.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Sensors-Based Human Activity Recognition Using Hybrid Features and Deep Capsule Network
    Ghafoor, Hafiz Yasir
    Jahangir, Rashid
    Jaffar, Arfan
    Alroobaea, Roobaea
    Saidani, Oumaima
    Alhayan, Fatimah
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 23129 - 23139
  • [32] Detection of Gestures Associated With Medication Adherence Using Smartwatch-Based Inertial Sensors
    Kalantarian, Haik
    Alshurafa, Nabil
    Sarrafzadeh, Majid
    IEEE SENSORS JOURNAL, 2016, 16 (04) : 1054 - 1061
  • [33] Smartwatch-Based Face-Touch Prediction Using Deep Representational Learning
    Rizk, Hamada
    Amano, Tatsuya
    Yamaguchi, Hirozumi
    Youssef, Moustafa
    MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES, 2022, 419 : 493 - 499
  • [34] Smartwatch-based Activity Analysis During Sleep for Early Parkinson's Disease Detection
    Iakovakis, Dimitrios
    Mastoras, Rafail E.
    Hadjidimitriou, Stelios
    Charisis, Vasileios
    Bostanjopoulou, Sevasti
    Katsarou, Zoe
    Klingelhoefer, Lisa
    Reichmann, Heinz
    Trivedi, Dhaval
    Chaudhuri, Ray K.
    Hadjileontiadis, Leontios J.
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 4326 - 4329
  • [35] Complex Human Activity Recognition Based on Spatial LSTM and Deep Residual Convolutional Network Using Wearable Motion Sensors
    Tian, Ye
    Hettiarachchi, Dulmini
    Yu, Han
    Kamijo, Shunsuke
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 23183 - 23196
  • [36] Human action recognition using attention based LSTM network with dilated CNN features
    Muhammad, Khan
    Mustaqeem
    Ullah, Amin
    Imran, Ali Shariq
    Sajjad, Muhammad
    Kiran, Mustafa Servet
    Sannino, Giovanna
    de Albuquerque, Victor Hugo C.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 125 : 820 - 830
  • [37] Smartwatch based respiratory rate estimation during sleep using CNN/LSTM neural network
    Havriushenko, Anastasiia
    Slyusarenko, Kostyantyn
    Fedorin, Illia
    2020 IEEE 40TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND NANOTECHNOLOGY (ELNANO), 2020, : 584 - 587
  • [38] Human Activity Recognition based on Machine Learning Classification of Smartwatch Accelerometer Dataset
    Radivojevic, Dusan S.
    Mirkov, Nikola S.
    Maletic, Slobodan
    FME TRANSACTIONS, 2021, 49 (01): : 225 - 232
  • [39] Human Activity Recognition Based on Wearable Sensor Using Hierarchical Deep LSTM Networks
    LuKun Wang
    RuYue Liu
    Circuits, Systems, and Signal Processing, 2020, 39 : 837 - 856
  • [40] Human Activity Recognition Based on Wearable Sensor Using Hierarchical Deep LSTM Networks
    Wang, LuKun
    Liu, RuYue
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2020, 39 (02) : 837 - 856