Vortex dynamics in a two-dimensional domain with holes and the small obstacle limit

被引:23
|
作者
Lopes, M. C. [1 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Math, BR-13083250 Campinas, SP, Brazil
关键词
incompressible flow; Euler equations; vorticity; MOTION; FLOW;
D O I
10.1137/050647967
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we examine the asymptotic behavior of solutions of the incompressible two-dimensional Euler equations on a domain with several holes, when one of the holes becomes small. We show that the limit flow satisfies a modified Euler system in the domain with the small hole removed. In vorticity form, the limit system is the usual equation for transport of vorticity, coupled with a modified Biot-Savart law which includes a point vortex at the point where the small hole disappears, together with the appropriate correction for the harmonic part of the flow. This work extends results by Iftimie, Lopes Filho, and Nussenzveig Lopes, obtained in the context of the exterior of a single small obstacle in the plane; see [ Comm. Partial Differential Equations, 28 ( 2003), pp. 349 - 379]. The main difficulty in the present situation lies in controlling the behavior of the harmonic part of the flow, which is not an exact conserved quantity. As part of our analysis we develop a new description of two-dimensional vortex dynamics in a general domain with holes.
引用
收藏
页码:422 / 436
页数:15
相关论文
共 50 条
  • [31] Modeling of a two-dimensional vortex unsteady row in the multiconnected domain
    Nikonov, VV
    Shakhov, VG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 2002, (01): : 24 - 26
  • [32] Motion of a two-dimensional monopolar vortex in a bounded rectangular domain
    vanGeffen, JHGM
    Meleshko, VV
    vanHeijst, GJF
    PHYSICS OF FLUIDS, 1996, 8 (09) : 2393 - 2399
  • [33] Modeling of a two-dimensional vortex unsteady flow in the multiconnected domain
    Nikonov, V.V.
    Shakhov, V.G.
    Izvestiya Vysshikh Uchebnykh Zavedenij. Aviatsionnaya Tekhnika, 2002, (01): : 24 - 27
  • [34] Three-dimensional representation of two-dimensional vortex dynamics in lasers
    Malos, JT
    Staliunas, K
    Vaupel, M
    Weiss, CO
    OPTICS COMMUNICATIONS, 1996, 128 (1-3) : 123 - 135
  • [35] Γ-Limit for Two-Dimensional Charged Magnetic Zigzag Domain Walls
    Knuepfer, Hans
    Shi, Wenhui
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 239 (03) : 1875 - 1923
  • [36] Vortex dynamics in the two-dimensional BCS-BEC crossover
    Max Heyl
    Kyosuke Adachi
    Yuki M. Itahashi
    Yuji Nakagawa
    Yuichi Kasahara
    Emil J. W. List-Kratochvil
    Yusuke Kato
    Yoshihiro Iwasa
    Nature Communications, 13
  • [37] Vortex dynamics and frustration in two-dimensional triangular chromium lattices
    Hemmida, M.
    von Nidda, H. -A. Krug
    Buettgen, N.
    Loidl, A.
    Alexander, L. K.
    Nath, R.
    Mahajan, A. V.
    Berger, R. F.
    Cava, R. J.
    Singh, Yogesh
    Johnston, D. C.
    PHYSICAL REVIEW B, 2009, 80 (05):
  • [38] Vortex dynamics in the two-dimensional BCS-BEC crossover
    Heyl, Max
    Adachi, Kyosuke
    Itahashi, Yuki M.
    Nakagawa, Yuji
    Kasahara, Yuichi
    List-Kratochvil, Emil J. W.
    Kato, Yusuke
    Iwasa, Yoshihiro
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [39] On the effects of viscoelasticity on two-dimensional vortex dynamics in the cylinder wake
    Sahin, M
    Owens, RG
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2004, 123 (2-3) : 121 - 139
  • [40] Spectral energy transport in two-dimensional quantum vortex dynamics
    Billam, T. P.
    Reeves, M. T.
    Bradley, A. S.
    PHYSICAL REVIEW A, 2015, 91 (02):