Sums of powers of roots via Bell polynomials

被引:0
|
作者
Withers, Christopher S. [1 ]
Nadarajah, Saralees [2 ]
机构
[1] Callaghan Innovat, Lower Hutt, New Zealand
[2] Univ Manchester, Manchester M13 9PL, Lancs, England
关键词
Bell polynomials; generating functions; Girard's formula; NEWTON-GIRARD; FORMULAS;
D O I
10.1080/10652469.2021.1939327
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a function with a power series expansion and roots {x(n), 1 <= n < infinity}. We give two methods for obtaining the sums of powers of these roots, S-k = Sigma(infinity)(n=1)x(n)(k). The first is by expressing Girard's formula in terms of Bell polynomials. Explicit expressions are given for S-k for k <= 10. The second method is through generating functions.
引用
收藏
页码:388 / 399
页数:12
相关论文
共 50 条
  • [41] SUMS OF POWERS OF DIGITAL SUMS
    KENNEDY, RE
    COOPER, C
    FIBONACCI QUARTERLY, 1993, 31 (04): : 341 - 345
  • [42] SUMS OF SEVENTH POWERS IN THE RING OF POLYNOMIALS OVER THE FINITE FIELD WITH FOUR ELEMENTS
    Car, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2013, 82 (01): : 39 - 67
  • [43] CONVEX-HULL OF POLYNOMIALS AND SUMS OF 2M-TH POWERS
    BRADLEY, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (12): : 751 - 755
  • [44] KAI WANG: INTEGER SEQUENCES FOR ELEMENTARY SYMMETRIC POLYNOMIALS OF POWERS OF ROOTS
    Wang, Kai
    FIBONACCI QUARTERLY, 2020, 58 (05): : 237 - 237
  • [45] Computation of Sums of Natural Powers of the Inverses of Roots of an Equation Connected with a Spectral Problem
    Kostin A.B.
    Sherstyukov V.B.
    Journal of Mathematical Sciences, 2020, 244 (4) : 624 - 641
  • [46] CONGRUENCES RELATED TO BELL POLYNOMIALS VIA A DIFFERENTIAL OPERATOR
    Benyattou, Abdelkader
    Mihoubi, Miloud
    MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 571 - 579
  • [47] Linear Recurrence Sequences and Their Convolutions via Bell Polynomials
    Birmajer, Daniel
    Gil, Juan B.
    Weiner, Michael D.
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (01)
  • [48] Derivatives of functions of matrix functions via Bell polynomials
    Withers, Christopher S.
    Nadarajah, Saralees
    UTILITAS MATHEMATICA, 2016, 99 : 43 - 62
  • [49] SUMS OF POLYNOMIALS AS PERMUTATION POLYNOMIALS
    NIEDERRE.HG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (02): : 360 - &
  • [50] Learning sums of powers of low-degree polynomials in the non-degenerate case
    Garg, Ankit
    Kayal, Neeraj
    Saha, Chandan
    2020 IEEE 61ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2020), 2020, : 889 - 899