On non-linear ε-isometries between the positive cones of certain continuous function spaces

被引:0
|
作者
Sun, Longfa [1 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Baoding 071003, Peoples R China
关键词
epsilon-isometry; Hyers-Ulam stability; Banach-Stone theorem; Continuous function space; STABILITY;
D O I
10.1007/s43034-021-00141-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X, Y be two w*-almost smooth Banach spaces, C(B(X*), w*) be the Banach space of all continuous real-valued functions on B(X*) endowed with the supremum norm and C+(B(X*), w*) be the positive cone of C(B(X*), w*). In this paper, we show that if F : C+(B(X*), w*) -> C+(B(Y*), w*) is a standard almost surjective epsilon-isometry, then there exists a homeomorphism tau : B(X*) -> B(Y*) in the w*-topology such that for any x* is an element of B(X*), we have vertical bar <delta(chi*), f > - <delta(tau(chi*)), F(f)>vertical bar <= 2 epsilon, for all f is an element of C+(B(X*), w*). As its application, we show that if U : C(B(X*), w*) -> C(B(Y*), w*) is the canonical linear surjective isometry induced by the homeomorphism gamma = tau(-1) : B(Y*) -> B(X*) in the w*-topology, then vertical bar vertical bar F(f) - U(f)vertical bar vertical bar <= 2 epsilon, for all f is an element of C+(B(X*), w*).
引用
收藏
页数:14
相关论文
共 50 条
  • [41] NONLINEAR ISOMETRIES BETWEEN FUNCTION SPACES
    Roberts, Kathleen
    Lee, Kristopher
    ANNALS OF FUNCTIONAL ANALYSIS, 2017, 8 (04): : 460 - 472
  • [42] OPTIMAL VALUES AND POINTS OF A CERTAIN NON-LINEAR FUNCTION
    BAKHTIN, IA
    DOKLADY AKADEMII NAUK SSSR, 1963, 148 (04): : 741 - &
  • [43] LINEAR ISOMETRIES OF SUBSPACES OF SPACES OF CONTINUOUS-FUNCTIONS
    NOVINGER, WP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (07): : A664 - A664
  • [44] LINEAR ISOMETRIES OF SUBSPACES OF SPACES OF CONTINUOUS-FUNCTIONS
    NOVINGER, WP
    STUDIA MATHEMATICA, 1975, 53 (03) : 273 - 276
  • [45] Linear isometries on spaces consisting of absolutely continuous functions
    Koshimizu H.
    Acta Scientiarum Mathematicarum, 2014, 80 (3-4): : 581 - 590
  • [46] LOCAL AND 2-LOCAL ISOMETRIES BETWEEN ABSOLUTELY CONTINUOUS FUNCTION SPACES
    Hosseini, Maliheh
    Font, Juan J.
    OPERATORS AND MATRICES, 2021, 15 (04): : 1461 - 1468
  • [47] Phase-isometries between the positive cones of the Banach space of continuous real-valued functions
    Hirota, Daisuke
    Matsuzaki, Izuho
    Miura, Takeshi
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (04)
  • [48] INTO LINEAR ISOMETRIES BETWEEN SPACES OF LIPSCHITZ FUNCTIONS
    Jimenez-Vargas, A.
    Villegas-Vallecillos, Moises
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04): : 1165 - 1184
  • [49] NON-LINEAR CONVERGING RESONANCE CONES
    WILSON, JR
    WONG, KL
    PHYSICS OF FLUIDS, 1980, 23 (03) : 566 - 572
  • [50] NON-LINEAR CONVERGING RESONANCE CONES
    KUEHL, HH
    WANG, WS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 845 - 845