Eigenvalues and chromatic number of a signed graph

被引:8
|
作者
Wang, Wei [1 ]
Yan, Zhidan [1 ]
Qian, Jianguo [2 ]
机构
[1] Anhui Polytech Univ, Sch Math Phys & Finance, Wuhu 241000, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
Signed graph; Eigenvalue; Chromatic number; Clique; SPECTRAL BOUNDS; CLIQUE;
D O I
10.1016/j.laa.2021.02.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a signed graph Sigma, let chi(Sigma), lambda(1) and lambda(n) be the chromatic number, the maximum eigenvalue and the minimum eigenvalue of Sigma, respectively. This paper proves that, for any nonempty signed graph Sigma with n vertices, chi(Sigma) >= max {1 + lambda(1)/vertical bar lambda(n)vertical bar, n/n - lambda(1)}. These two bounds extend the classical spectral lower bounds of Hoffman and Cvetkovic for an ordinary graph, respectively. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 50 条
  • [31] THE MULTISET CHROMATIC NUMBER OF A GRAPH
    Chartrand, Gary
    Okamoto, Futaba
    Salehi, Ebrahim
    Zhang, Ping
    MATHEMATICA BOHEMICA, 2009, 134 (02): : 191 - 209
  • [32] THE STRONG CHROMATIC NUMBER OF A GRAPH
    ALON, N
    RANDOM STRUCTURES & ALGORITHMS, 1992, 3 (01) : 1 - 7
  • [33] Rank and chromatic number of a graph
    Kotlov, A
    JOURNAL OF GRAPH THEORY, 1997, 26 (01) : 1 - 8
  • [34] Spectral Inequalities on Independence Number, Chromatic Number, and Total Chromatic Number of a Graph
    Li, Rao
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2015, 18 (1-2): : 41 - 46
  • [36] The odd-valued chromatic polynomial of a signed graph
    Ren, Xiangyu
    Qian, Jianguo
    Huang, Sumin
    Zhang, Junxia
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [37] Distance Laplacian Eigenvalues and Chromatic Number in Graphs
    Aouchiche, Mustapha
    Hansen, Pierre
    FILOMAT, 2017, 31 (09) : 2545 - 2555
  • [38] Sums of squares of eigenvalues and the vector chromatic number
    Coutinho, Gabriel
    Spier, Thomás Jung
    arXiv, 2023,
  • [39] Bounds on the Dynamic Chromatic Number of a Graph in Terms of its Chromatic Number
    Vlasova N.Y.
    Karpov D.V.
    Journal of Mathematical Sciences, 2018, 232 (1) : 21 - 24
  • [40] All eigenvalues of the power hypergraph and signed subgraphs of a graph
    Chen, Lixiang
    van Dam, Edwin R.
    Bu, Changjiang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 676 : 205 - 210