Nuclear Reactors Safety Core Parameters Prediction using Artificial Neural Networks

被引:0
|
作者
Saber, Amany S. [1 ]
El-Koliel, Moustafa S. [1 ]
El-Rashidy, Mohamed A. [2 ]
Taha, Taha E. [2 ]
机构
[1] Atom Energy Author, Nucl Res Ctr, Cairo, Egypt
[2] Menoufiya Univ, Fac Elect Engn, Cairo, Egypt
关键词
Apriori Association Rules; Particle Swarm Optimization; Artificial Neural Networks; Effective Multiplication Factor; and Power Peaking Factor; PARTIAL LEAST-SQUARES; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The present work investigates an appropriate algorithm based on Multilayer Perceptron Neural Network (MPNN), Apriori association rules and Particle Swarm Optimization (PSO) models for predicting two significant core safety parameters; the multiplication factor K-eff and the power peaking factor P-max of the benchmark 10 MW IAEA LEU research reactor. It provides a comprehensive analytic method for establishing an Artificial Neural Network (ANN) with self-organizing architecture by finding an optimal number of hidden layers and their neurons, a less number of effective features of data set and the most appropriate topology for internal connections. The performance of the proposed algorithm is evaluated using the 2-Dimensional neutronic diffusion code MUDICO-2D to obtain the data required for the training of the neural networks. Experimental results demonstrate the effectiveness and the notability of the proposed algorithm comparing with Trainlm-LM, quasi-Newton (Trainbfg-BFGS), and Resilient Propagation (trainrp-RPROP) algorithms.
引用
收藏
页码:163 / 168
页数:6
相关论文
共 50 条
  • [31] Prediction of high energy particle shower sizes and core location using artificial neural networks
    Gitanjali Devi
    Kandarpa Kumar Sarma
    Pranayee Datta
    Anjana Kakoti Mahanta
    Indian Journal of Physics, 2012, 86 : 77 - 84
  • [32] Prediction of high energy particle shower sizes and core location using artificial neural networks
    Devi, G.
    Sarma, K. K.
    Datta, P.
    Mahanta, A. K.
    INDIAN JOURNAL OF PHYSICS, 2012, 86 (01) : 77 - 84
  • [33] USING ARTIFICIAL NEURAL NETWORKS IN THE REACTOR SAFETY RESEARCH
    Kratzsch, Alexander
    Kaestner, Wolfgang
    Hampel, Rainer
    ICONE16: PROCEEDING OF THE 16TH INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING - 2008, VOL 2, 2008, : 891 - 897
  • [34] Forecasting aquifer parameters using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    JOURNAL OF POROUS MEDIA, 2006, 9 (05) : 429 - 444
  • [35] Predicting important parameters using artificial neural networks
    Ramakumar, K. R.
    HYDROCARBON PROCESSING, 2008, 87 (10): : 81 - 83
  • [36] Modelling of Atmospheric Parameters Using Artificial Neural Networks
    Demirtas, Ozlem
    Efe, Mehmet Onder
    2019 9TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), 2019, : 571 - 577
  • [37] Extraction of cloud parameters using artificial neural networks
    Cerdena, A.
    Gonzalez, A.
    Perez, J. C.
    REVISTA DE TELEDETECCION, 2005, (24): : 49 - 53
  • [38] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [39] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [40] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212