Invariant convergent and invariant ideal convergent sequence in intuitionistic fuzzy normed space

被引:0
|
作者
Khan, Vakeel A. [1 ]
Khan, Izhar Ali [1 ]
Esi, Ayhan [2 ]
Alam, Masood [3 ,4 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh, Uttar Pradesh, India
[2] Malatya Turgut Ozal Univ, Dept Basic Engn Sci Math Sect, Engn Fac, TR-44040 Malatya, Turkey
[3] Sultan Qaboos Univ, Dept Math, Seeb, Oman
[4] Sultan Qaboos Univ, IT Ctr Preparatory Studies, Seeb, Oman
关键词
Intuitionistic fuzzy normed space; Ideal convergent; Invariant mean; STATISTICAL CONVERGENCE;
D O I
10.3233/JIFS-213327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main purpose of this paper is to introduce invariant convergence in intuitionistic fuzzy normed space. Following which we present some characteristics of this notion with respect to intuitionistic fuzzy norm. We also define strongly invariant convergence, ideal invariant convergence and invariant ideal convergence in intuitionistic fuzzy normed space. After that, we establish the relationship between these notions with respect to intuitionistic fuzzy norm. Lastly, we define ideal invariant Cauchy and invariant ideal Cauchy criteria for sequences in intuitionistic fuzzy normed space and relate it to their convergence notion.
引用
收藏
页码:1429 / 1438
页数:10
相关论文
共 50 条
  • [21] Some results of neutrosophic normed space VIA Tribonacci convergent sequence spaces
    Vakeel A. Khan
    Mohammad Arshad
    Mohammad Daud Khan
    Journal of Inequalities and Applications, 2022
  • [22] INVARIANT CONVERGENCE IN FUZZY NORMED SPACES
    Yalvac, Seyma
    Dundar, Erdinc
    HONAM MATHEMATICAL JOURNAL, 2021, 43 (03): : 433 - 440
  • [23] SPACES OF FIBONACCI DIFFERENCE IDEAL CONVERGENT SEQUENCES IN RANDOM 2-NORMED SPACE
    Khan, Vakeel A.
    Altaf, Henna
    Esi, Ayhan
    Alshlool, Kamal M. A. S.
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 773 - 781
  • [24] Some results of neutrosophic normed space VIA Tribonacci convergent sequence spaces
    Khan, Vakeel A.
    Arshad, Mohammad
    Khan, Mohammad Daud
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [25] The Intuitionistic Fuzzy Normed Space of Coefficients
    Bilalov, B. T.
    Farahani, S. M.
    Guliyeva, F. A.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [26] Ideal convergent sequence spaces of fuzzy star-shaped numbers
    Khan, Vakeel A.
    Tuba, Umme
    Ashadul Rahaman, S.K.
    Ahmad, Ayaz
    Journal of Intelligent and Fuzzy Systems, 2021, 40 (06): : 11355 - 11362
  • [27] A study of fuzzy anti-?-ideal convergent triple sequence spaces
    Idrisi, Mohammad Imran
    Saini, Kavita
    Ahmad, Mobeen
    Aslam, Sumaira
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (02) : 353 - 358
  • [28] Ideal convergent sequence spaces of fuzzy star-shaped numbers
    Khan, Vakeel A.
    Tuba, Umme
    Rahaman, Sk Ashadul
    Ahmad, Ayaz
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 11355 - 11362
  • [29] Intuitionistic fuzzy I-convergent sequence spaces defined by compact operator
    Khan, Vakeel A.
    Yasmeen
    Fatima, Hira
    Altaf, Henna
    Lohani, Q. M. Danish
    COGENT MATHEMATICS, 2016, 3
  • [30] ON DIFFERENCE FUZZY ANTI A-IDEAL CONVERGENT DOUBLE SEQUENCE SPACES
    Al-Labadi, Manal
    Saranya, S.
    Yasmeen
    Idrisi, Mohammad Imran
    BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 15 (04): : 34 - 42