Fixed point and selection theorems in hyperconvex spaces

被引:31
|
作者
Khamsi, MA [1 ]
Kirk, WA
Yañez, CM
机构
[1] Univ Texas, Dept Math Sci, El Paso, TX 79968 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[3] Pontificia Univ Catolica Valparaiso, Inst Math, Valparaiso, Chile
关键词
hyperconvex metric spaces; fixed points; selection theorems;
D O I
10.1090/S0002-9939-00-05777-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that a set-valued mapping T* of a hyperconvex metric space M which takes values in the space of nonempty externally hyperconvex subsets of M always has a lipschitzian single valued selection T which satisfies d(T(x), T(y)) less than or equal to d(H) (T*(x), T*(y)) for all x, y is an element of M. (Here d(H) denotes the usual Hausdorff distance.) This fact is used to show that the space of all bounded lambda-lipschitzian self-mappings of M is itself hyperconvex. Several related results are also obtained.
引用
收藏
页码:3275 / 3283
页数:9
相关论文
共 50 条
  • [31] Fixed point theorems on ordered vector spaces
    Jin Lu Li
    Cong Jun Zhang
    Qi Qiong Chen
    Fixed Point Theory and Applications, 2014
  • [32] Some fixed point theorems in metric spaces
    Jotic, N
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1995, 26 (10): : 947 - 952
  • [33] On Completeness in Metric Spaces and Fixed Point Theorems
    Gregori, Valentin
    Minana, Juan-Jose
    Roig, Bernardino
    Sapena, Almanzor
    RESULTS IN MATHEMATICS, 2018, 73 (04)
  • [34] Fixed point theorems in Boolean vector spaces
    Rao, D. P. R. V. Subba
    Pant, Rajendra
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (16) : 5383 - 5387
  • [35] Fixed point theorems in ordered abstract spaces
    Nieto, Juan J.
    Pouso, Rodrigo L.
    Rodriguez-Lopez, Rosana
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (08) : 2505 - 2517
  • [36] Common Fixed Point Theorems in Uniform Spaces
    Ben Dhagat, Vanita
    NOTE DI MATEMATICA, 2010, 30 (01): : 57 - 60
  • [37] Fixed point theorems in fuzzy metric spaces
    Kim, KH
    Kang, SM
    Huang, NJ
    FIXED POINT THEORY AND APPLICATIONS, VOL 3, 2002, : 137 - 145
  • [38] Fixed Point Theorems in Fuzzy Metric Spaces
    Beg, Ismat
    Sedghi, Shaban
    Shobe, Nabi
    INTERNATIONAL JOURNAL OF ANALYSIS, 2013,
  • [39] Fixed point theorems in locally convex spaces
    D. Bugajewski
    Acta Mathematica Hungarica, 2003, 98 : 345 - 355
  • [40] Generalized Normed Spaces and Fixed Point Theorems
    Khan, Kamran Alam
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 13 (02): : 157 - 167