ecodistrict;
yield forecasting;
MODIS;
ICCYF;
spring wheat;
ENHANCED VEGETATION INDEX;
GREEN AREA INDEX;
WHEAT YIELD;
TIME-SERIES;
MODEL;
INFORMATION;
PREDICTION;
LANDSCAPE;
PROFILES;
REGIONS;
D O I:
10.3390/rs61010193
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Crop yield forecasting plays a vital role in coping with the challenges of the impacts of climate change on agriculture. Improvements in the timeliness and accuracy of yield forecasting by incorporating near real-time remote sensing data and the use of sophisticated statistical methods can improve our capacity to respond effectively to these challenges. The objectives of this study were (i) to investigate the use of derived vegetation indices for the yield forecasting of spring wheat (Triticum aestivum L.) from the Moderate resolution Imaging Spectroradiometer (MODIS) at the ecodistrict scale across Western Canada with the Integrated Canadian Crop Yield Forecaster (ICCYF); and (ii) to compare the ICCYF-model based forecasts and their accuracy across two spatial scales-the ecodistrict and Census Agricultural Region (CAR), namely in CAR with previously reported ICCYF weak performance. Ecodistricts are areas with distinct climate, soil, landscape and ecological aspects, whereas CARs are census-based/statistically-delineated areas. Agroclimate variables combined respectively with MODIS-NDVI and MODIS-EVI indices were used as inputs for the in-season yield forecasting of spring wheat during the 2000-2010 period. Regression models were built based on a procedure of a leave-one-year-out. The results showed that both agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI performed equally well predicting spring wheat yield at the ECD scale. The mean absolute error percentages (MAPE) of the models selected from both the two data sets ranged from 2% to 33% over the study period. The model efficiency index (MEI) varied between -1.1 and 0.99 and -1.8 and 0.99, respectively for the agroclimate + MODIS-NDVI and agroclimate + MODIS-EVI data sets. Moreover, significant improvement in forecasting skill (with decreasing MAPE of 40% and 5 times increasing MEI, on average) was obtained at the finer, ecodistrict spatial scale, compared to the coarser CAR scale. Forecast models need to consider the distribution of extreme values of predictor variables to improve the selection of remote sensing indices. Our findings indicate that statistical-based forecasting error could be significantly reduced by making use of MODIS-EVI and NDVI indices at different times in the crop growing season and within different sub-regions.
机构:
Wageningen Univ, Meteorol & Air Qual Sect, POB 47, NL-6700 AA Wageningen, NetherlandsWageningen Univ, Meteorol & Air Qual Sect, POB 47, NL-6700 AA Wageningen, Netherlands
Chinyoka, S.
Steeneveld, G. J.
论文数: 0引用数: 0
h-index: 0
机构:
Wageningen Univ, Meteorol & Air Qual Sect, POB 47, NL-6700 AA Wageningen, NetherlandsWageningen Univ, Meteorol & Air Qual Sect, POB 47, NL-6700 AA Wageningen, Netherlands
机构:
Univ Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia
Lalic, B.
Sremac, A. Firanj
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia
Sremac, A. Firanj
Eitzinger, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nat Resources & Life Sci, Inst Meteorol, Gregor Mendel Str 33, A-1180 Vienna, AustriaUniv Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia
Eitzinger, J.
Stricevic, R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Belgrade, Fac Agr, Nemanjina 6, Belgrade 11080, SerbiaUniv Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia
Stricevic, R.
Thaler, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nat Resources & Life Sci, Inst Meteorol, Gregor Mendel Str 33, A-1180 Vienna, AustriaUniv Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia
Thaler, S.
论文数: 引用数:
h-index:
机构:
Maksimovic, I
Danicic, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia
Danicic, M.
Perisic, D.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Novi Sad, Fac Sci, Dositej Obradovic Sq 4, Novi Sad 21000, SerbiaUniv Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia
Perisic, D.
Dekic, Lj
论文数: 0引用数: 0
h-index: 0
机构:
Republ Hydrometeorol Serv Serbia, Kneza Viseslava 66, Belgrade 11000, SerbiaUniv Novi Sad, Fac Agr, Dositej Obradovic Sq 8, Novi Sad 21000, Serbia
机构:
Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R ChinaWuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
Qiu, Ruonan
Li, Xing
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USA
Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul, South KoreaWuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
Li, Xing
Han, Ge
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R ChinaWuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
Han, Ge
Xiao, Jingfeng
论文数: 0引用数: 0
h-index: 0
机构:
Univ New Hampshire, Inst Study Earth Oceans & Space, Earth Syst Res Ctr, Durham, NH 03824 USAWuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
Xiao, Jingfeng
Ma, Xin
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430079, Peoples R ChinaWuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
Ma, Xin
Gong, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Elect Informat Sch, Wuhan 430079, Peoples R ChinaWuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China