Energy spectra of neutrons penetrating concrete and steel shielding blocks from 24 GeV/c protons incident on thick copper target

被引:4
|
作者
Lee, Eunji [1 ]
Shigyo, Nobuhiro [1 ]
Kajimoto, Tsuyoshi [2 ]
Sanami, Toshiya [3 ,4 ]
Nakao, Noriaki [5 ]
Froeschl, Robert [6 ]
Iliopoulou, Elpida [6 ,7 ]
Infantino, Angelo [6 ]
Roesler, Stefan [6 ]
Brugger, Markus [6 ]
机构
[1] Kyushu Univ, Dept Appl Quantum Phys & Nucl Engn, Nishi Ku, Fukuoka 8190395, Japan
[2] Hiroshima Univ, 1-4-1 Kagamiyama, Higashihiroshima 7398527, Japan
[3] High Energy Accelerator Res Org KEK, Tsukuba, Ibaraki 3050801, Japan
[4] Grad Univ Adv Studies SOKENDAI, Hayama, Kanagawa 2400193, Japan
[5] Shimizu Corp, Koto Ku, 3-4-17 Etchujima, Tokyo 1358530, Japan
[6] CERN, CH-1211 Geneva 23, Switzerland
[7] Hirslanden Private Hosp Grp, Inst Radiat Oncol, Zurich, Switzerland
来源
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT | 2021年 / 998卷
关键词
Accelerator shielding; High energy neutron; Spectrum; Unfolding; Shielding calculation; NE213; SCINTILLATOR; LIGHT OUTPUT; BENCHMARK; FACILITY; PARTICLE; VERSION; CERN;
D O I
10.1016/j.nima.2021.165189
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
In this study, experimental measurements were performed on the spectra of neutrons which penetrate concrete and steel of various thicknesses values when a proton beam of 24 GeV/c was incident on a copper target at the CHARM facility in the East Hall of the CERN Proton Synchrotron (PS) The thicknesses of concrete and steel ranged up to 360 cm and 80 cm, respectively. To measure the neutron spectra, an NE213 scintillator was positioned on the top roof of the shielding structure as the neutron detector. The light output distributions of the detector were converted into the neutron energy spectra using the unfolding method with a calculated response matrix after removing the ??????-ray and charged particle events by pulse-shape discrimination and veto counter signals, respectively. The neutron spectra were in agreement with the results obtained using the Monte Carlo simulation code, PHITS, within a factor of 1.4 except for the case of steel 80 cm. The attenuation profiles for concrete and steel were consistent with previous foil activation results within the respective uncertainties.
引用
收藏
页数:13
相关论文
共 28 条