On the Orlicz Minkowski problem for logarithmic capacity

被引:3
|
作者
Hu, Zejun [1 ]
Li, Hai [1 ]
机构
[1] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
关键词
Convex body; Logarithmic capacity; Orlicz Minkowski problem; HADAMARD VARIATIONAL FORMULA;
D O I
10.1016/j.jmaa.2022.126005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, studying the Orlicz Minkowski problem for logarithmic capacity, we prove the existence of its solution for general measure by the method of approximation. To achieve the purpose, we first prove the existence of its solution for the special case of discrete measure by variational method. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] THE ORLICZ-MINKOWSKI PROBLEM FOR POLYTOPES
    Jiang, Meiyue
    Wang, Chu
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (06): : 1917 - 1930
  • [22] The Logarithmic Capacitary Minkowski Problem for Polytopes
    Ge Xiong
    Jia Wei Xiong
    Acta Mathematica Sinica, English Series, 2022, 38 : 406 - 418
  • [23] The Logarithmic Capacitary Minkowski Problem for Polytopes
    Xiong, Ge
    Xiong, Jia Wei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (02) : 406 - 418
  • [24] The Logarithmic Capacitary Minkowski Problem for Polytopes
    Ge XIONG
    Jia Wei XIONG
    Acta Mathematica Sinica,English Series, 2022, (02) : 406 - 418
  • [25] Existence of solutions to the Orlicz-Minkowski problem
    Jian, Huaiyu
    Lu, Jian
    ADVANCES IN MATHEMATICS, 2019, 344 : 262 - 288
  • [26] The Orlicz chord Minkowski problem for general measures
    Li, Suwei
    Chen, Qiuyue
    Jin, Hailin
    ADVANCES IN APPLIED MATHEMATICS, 2025, 165
  • [27] The Orlicz-Minkowski problem for measure in Rn and Orlicz geominimal measures
    Mou, Shuang
    Zhu, Baocheng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2019, 30 (11)
  • [28] The Orlicz-Minkowski problem for torsional rigidity
    Li, Ni
    Zhu, Baocheng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8549 - 8572
  • [29] On the General Dual Orlicz-Minkowski Problem
    Xing, Sudan
    Ye, Deping
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (02) : 621 - 655
  • [30] A logarithmic Gauss curvature flow and the Minkowski problem
    Chou, KS
    Wang, XJ
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (06): : 733 - 751