Investigation of deposition and self-cleaning mechanism during particulate fouling on dimpled surfaces

被引:16
|
作者
Deponte, Hannes [1 ]
Rohwer, Lukas [1 ]
Augustin, Wolfgang [1 ]
Scholl, Stephan [1 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Chem & Thermal Proc Engn ICTV, Langer Kamp 7, D-38106 Braunschweig, Germany
关键词
HEAT-TRANSFER SURFACES; FLOW; CHANNEL;
D O I
10.1007/s00231-019-02676-0
中图分类号
O414.1 [热力学];
学科分类号
摘要
Structuring of surfaces increases the efficiency of heat exchangers, but influences the deposition of particles suspended in the fluid. It is assumed, that spherical dimples suppress the deposition of particles or even induce a permanent cleaning of the occupied surface. In this study the self-cleaning mechanism of dimpled surfaces in heat exchangers is investigated to describe the influencing factors and mechanisms of particulate fouling. To get a detailed insight into fundamental deposition mechanisms, experiments on different dimpled surfaces have been carried out. According to conditions of industriell problems, e.g. cooling water fouling using river or sea water, concentrations of particles (spherical glas, d(p,50) = 3 mu m) of c = 2 g/l to c = 10 g/l were used. Influences of enforced turbulence due to structuring of surface with dimples or increasing fluid velocity were investigated and visualialized with mu PIV technique. Furthermore, different test durations and number as well as the geometry of the dimples were considered and evaluated with specially developed analytical methods. In extension of preceding studies on the effect of a single dimple the influencing parameters were quantified and the effect of multiple dimples in a row were investigated experimentally. A repeatable fouling pattern was observed for the different structured surfaces. The quantitative results show that the surface coverage is generally decreased downstream of the dimples. Therefore, the results confirm earlier findings suggesting an advantage of dimpled surfaces against other surface structures with respect to thermo-hydraulic efficiency as well as reduced fouling propensit. Thus, this study has shown the occurrence of self-cleaning mechanisms of the surface downstream of the dimple and provides the possibility to estimate values for the reduction of particulate depositions on dimpled surfaces. All results presented were obtained by analyzing the surface around the dimple.
引用
收藏
页码:3633 / 3644
页数:12
相关论文
共 50 条
  • [31] GaAs interfacial self-cleaning by atomic layer deposition
    Hinkle, C. L.
    Sonnet, A. M.
    Vogel, E. M.
    McDonnell, S.
    Hughes, G. J.
    Milojevic, M.
    Lee, B.
    Aguirre-Tostado, F. S.
    Choi, K. J.
    Kim, H. C.
    Kim, J.
    Wallace, R. M.
    APPLIED PHYSICS LETTERS, 2008, 92 (07)
  • [32] SELF-CLEANING SURFACES USING ANISOTROPIC RATCHET CONVEYORS
    Sun, Di
    Bohringer, Karl F.
    2017 19TH INTERNATIONAL CONFERENCE ON SOLID-STATE SENSORS, ACTUATORS AND MICROSYSTEMS (TRANSDUCERS), 2017, : 1773 - 1776
  • [33] Self-cleaning surfaces as an innovative potential for sustainable concrete
    Hunger, M.
    Brouwers, H. J. H.
    EXCELLENCE IN CONCRETE CONSTRUCTION THROUGH INNOVATION, 2009, : 545 - +
  • [34] Low temperature self-cleaning properties of superhydrophobic surfaces
    Wang, Fajun
    Shen, Taohua
    Li, Changquan
    Li, Wen
    Yan, Guilong
    APPLIED SURFACE SCIENCE, 2014, 317 : 1107 - 1112
  • [35] Study on the wettability and self-cleaning of butterfly wing surfaces
    Chen, G
    Cong, Q
    Feng, Y
    Ren, L
    DESIGN AND NATURE II: COMPARING DESIGN IN NATURE WITH SCIENCE AND ENGINEERING, 2004, 6 : 245 - 251
  • [36] Cicada-inspired self-cleaning superhydrophobic surfaces
    Oh, Junho
    Yin, Sabrina
    Dana, Catherine E.
    Hong, Sungmin
    Roman, Jessica K.
    Jo, Kyoo Dong
    Chavan, Shreyas
    Cropek, Don
    Alleyne, Marianne
    Miljkovic, Nenad
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2019, 141 (10):
  • [37] Bioinspired superhydrophobic, self-cleaning and low drag surfaces
    Bhushan, Bharat
    NANOSTRUCTURED THIN FILMS VI, 2013, 8818
  • [38] Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity
    Nishimoto, Shunsuke
    Bhushan, Bharat
    RSC ADVANCES, 2013, 3 (03): : 671 - 690
  • [39] When and how self-cleaning of superhydrophobic surfaces works
    Geyer, Florian
    D'Acunzi, Maria
    Sharifi-Aghili, Azadeh
    Saal, Alexander
    Gao, Nan
    Kaltbeitzel, Anke
    Sloot, Tim-Frederik
    Berger, Ruediger
    Butt, Hans-Juergen
    Vollmer, Doris
    SCIENCE ADVANCES, 2020, 6 (03):
  • [40] Wetting and self-cleaning properties of artificial superhydrophobic surfaces
    Fürstner, R
    Barthlott, W
    Neinhuis, C
    Walzel, P
    LANGMUIR, 2005, 21 (03) : 956 - 961