Minimum codegree condition for perfect matchings in k-partite k-graphs

被引:0
|
作者
Lu, Hongliang [1 ]
Wang, Yan [2 ]
Yu, Xingxing [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
k-graph; k-partite k-graph; matching; perfect matching; UNIFORM HYPERGRAPHS; DEGREE THRESHOLDS;
D O I
10.1002/jgt.22448
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H be a k-partite k-graph with n vertices in each partition class, and let delta(k-1) (H) denote the minimum codegree of H. We characterize those H with delta(k-1) (H) >= n/2 and with no perfect matching. As a consequence, we give an affirmative answer to the following question of Rodl and Rucinski: if k is even or n not equivalent to 2 (mod 4), does delta(k-1) (H) >= n/2 imply that H has a perfect matching? We also give an example indicating that it is not sufficient to impose this degree bound on only two types of (k - 1)-sets.
引用
收藏
页码:207 / 229
页数:23
相关论文
共 50 条
  • [11] THE MEDIAN PROBLEM ON k-PARTITE GRAPHS
    Pravas, Karuvachery
    Vijayakumar, Ambat
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2015, 35 (03) : 439 - 446
  • [12] On degree sets in k-partite graphs
    Naikoo, T. A.
    Samee, U.
    Pirzada, S.
    Rather, Bilal A.
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2020, 12 (02) : 251 - 259
  • [13] On finding k-cliques in k-partite graphs
    M. Mirghorbani
    P. Krokhmal
    Optimization Letters, 2013, 7 : 1155 - 1165
  • [14] On finding k-cliques in k-partite graphs
    Mirghorbani, M.
    Krokhmal, P.
    OPTIMIZATION LETTERS, 2013, 7 (06) : 1155 - 1165
  • [15] Chorded Pancyclicity in k-Partite Graphs
    Ferrero, Daniela
    Lesniak, Linda
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1565 - 1580
  • [16] Label Propagation on K-partite Graphs
    Ding, Chris
    Li, Tao
    Wang, Dingding
    EIGHTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2009, : 273 - +
  • [17] Chorded Pancyclicity in k-Partite Graphs
    Daniela Ferrero
    Linda Lesniak
    Graphs and Combinatorics, 2018, 34 : 1565 - 1580
  • [18] GENERATING FUNCTION FOR REPRESENTATIONS OF GRAPHS BY k-PARTITE GRAPHS
    Ganopolsky, R. M.
    PRIKLADNAYA DISKRETNAYA MATEMATIKA, 2016, 31 (01): : 5 - 12
  • [19] On Hamiltonian cycles in balanced k-partite graphs
    DeBiasio, Louis
    Spanier, Nicholas
    DISCRETE MATHEMATICS, 2021, 344 (11)
  • [20] GEODETIC ORIENTATIONS OF COMPLETE K-PARTITE GRAPHS
    GASSMAN, LD
    ENTRINGER, RC
    GILBERT, JR
    LONZ, SA
    VUCENIC, W
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (03) : 214 - 238