An improved two-sweep iteration method for absolute value equations

被引:2
|
作者
Zhang, Hongbing [1 ]
Zhang, Yanjun [2 ]
Li, Yajing [1 ]
Fan, Hongtao [1 ,3 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
[2] Chongqing Univ, Coll Math & Stat, Chongqing 401331, Peoples R China
[3] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2022年 / 41卷 / 03期
基金
中国国家自然科学基金;
关键词
Absolute value equations; Two-sweep iteration method; Comparison theorem; Convergence; GENERALIZED NEWTON METHOD; LINEAR COMPLEMENTARITY-PROBLEM; CONVERGENCE;
D O I
10.1007/s40314-022-01832-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short paper, a new technology-based two-sweep iteration method for the absolute value equations is proposed, and, by constructing a novel comparison theorem about the norm size of these two matrices A and |A|, the convergence of the above method is given on the premise that the included parameters meet some appropriate conditions. Numerical simulation experiments are presented to verify that our method is more effective and practical than other popular methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Chen, Cairong
    Huang, Bo
    Yu, Dongmei
    Han, Deren
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 799 - 826
  • [42] Optimal parameter of the SOR-like iteration method for solving absolute value equations
    Cairong Chen
    Bo Huang
    Dongmei Yu
    Deren Han
    Numerical Algorithms, 2024, 96 : 799 - 826
  • [43] A Two-Step Iterative Method for Absolute Value Equations
    Khan, Alamgir
    Iqbal, Javed
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024, 21 (07)
  • [44] A two-sweep shift-splitting iterative method for complex symmetric linear systems
    Zhang, Li-Tao
    Zuo, Xian-Yu
    Wu, Shi-Liang
    Gu, Tong-Xiang
    Zhang, Yi-Fan
    Wang, Yan-Ping
    AIMS MATHEMATICS, 2020, 5 (03): : 1913 - 1925
  • [45] A modified Newton-based matrix splitting iteration method for generalized absolute value equations
    Zhou, Chen-Can
    Cao, Yang
    Shen, Qin-Qin
    Shi, Quan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 442
  • [46] Shift-splitting fixed point iteration method for solving generalized absolute value equations
    Li, Xu
    Li, Yi-Xin
    Dou, Yan
    NUMERICAL ALGORITHMS, 2023, 93 (02) : 695 - 710
  • [47] Shift-splitting fixed point iteration method for solving generalized absolute value equations
    Xu Li
    Yi-Xin Li
    Yan Dou
    Numerical Algorithms, 2023, 93 : 695 - 710
  • [48] Modified BAS iteration method for absolute value equation
    Li, Cui-Xia
    Yong, Long-Quan
    AIMS MATHEMATICS, 2022, 7 (01): : 606 - 616
  • [49] An Efficient Two-Step Iterative Method for Absolute Value Equations
    Khan A.
    Iqbal J.
    International Journal of Applied and Computational Mathematics, 2023, 9 (5)
  • [50] Numerical Solution of the Absolute Value Equations Using Two Matrix Splitting Fixed Point Iteration Methods
    Ali, Rashid
    Ali, Asad
    Alam, Mohammad Mahtab
    Mohamed, Abdullah
    JOURNAL OF FUNCTION SPACES, 2022, 2022