Arithmetic and Analysis of the Series Σn=1∞ 1/n sin x/n

被引:0
|
作者
Sebbar, Ahmed [1 ,2 ]
Gay, Roger [2 ]
机构
[1] Chapman Univ, One Univ Dr, Orange, CA 92866 USA
[2] Univ Bordeaux, UMR 5251, IMB, F-33405 Talence, France
关键词
Hardy-Littlewood function; Franel integral; Beurling's theorem; Arithmetic functions;
D O I
10.1007/s11785-021-01097-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we connect a celebrated theorem of Nyman and Beurling on the equivalence between the Riemann hypothesis and the density of some functional space in L-2(0,1) to a trigonometric series considered first by Hardy and Littlewood (see (3.4)). We highlight some of its curious analytical and arithmetical properties.
引用
收藏
页数:29
相关论文
共 50 条