Arithmetic and Analysis of the Series Σn=1∞ 1/n sin x/n

被引:0
|
作者
Sebbar, Ahmed [1 ,2 ]
Gay, Roger [2 ]
机构
[1] Chapman Univ, One Univ Dr, Orange, CA 92866 USA
[2] Univ Bordeaux, UMR 5251, IMB, F-33405 Talence, France
关键词
Hardy-Littlewood function; Franel integral; Beurling's theorem; Arithmetic functions;
D O I
10.1007/s11785-021-01097-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we connect a celebrated theorem of Nyman and Beurling on the equivalence between the Riemann hypothesis and the density of some functional space in L-2(0,1) to a trigonometric series considered first by Hardy and Littlewood (see (3.4)). We highlight some of its curious analytical and arithmetical properties.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] SIGMA 1-N SIN (X-N)
    SEGAL, SL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 4 (APR): : 385 - &
  • [2] ON THE INEQUALITY cos(n) x < 1 - sin x
    Bakic, Rados
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2015, 14 (05): : 141 - 143
  • [3] LIMN-]INFINITY /SIN N/1/N=1
    BERG, G
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (09): : 648 - 648
  • [4] THE SEQUENCE ((SIN N)N) IS DENSE IN (-1,1)
    STONG, R
    AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04): : 370 - 372
  • [5] 无穷积分I_n(α)=integral from n=1 to ∞(sin~nαx/x~n)dx的计算
    关大伟
    王东达
    松辽学刊(自然科学版), 1996, (01) : 72 - 75
  • [7] Convergence Of Solutions Of x(n+1) = x(n)x(n-1) - 1
    Wang, Yitao
    Luo, Yong
    Lu, Zhengyi
    APPLIED MATHEMATICS E-NOTES, 2012, 12 : 153 - 157
  • [8] UNBOUNDEDNESS OF SIGMA1/N SIN 1/N ON (-INFINITY INFINITY)
    NEWMAN, DJ
    SHEPP, LA
    MAVINKUR.MD
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (05): : 559 - &
  • [9] Links between Δ(x,N)=Σ 1-xφ(N) and character sums n≤xN (n,N)=1
    Codeca, P
    Nair, M
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2003, 6B (02): : 509 - 516
  • [10] Extremal values of Δ(x,N)=Σn&lt;xN(n,N=1)1-xφ(N)
    Codeca, P
    Nair, M
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1998, 41 (03): : 335 - 347