Adaptive Attentional Network for Few-Shot Relational Learning of Knowledge Graphs

被引:1
|
作者
Ma, Ruixin [1 ,2 ]
Li, Zeyang [1 ,2 ]
Ma, Yunlong [1 ,2 ]
Wu, Hao [1 ,2 ]
Yu, Mengfei [1 ,2 ]
Zhao, Liang [1 ,2 ]
机构
[1] Dalian Univ Technol, Sch Software Technol, Dalian 116024, Peoples R China
[2] Key Lab Ubiquitous Network & Serv Software Liaoni, Dalian 116600, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 09期
基金
中国国家自然科学基金;
关键词
few-shot; one-shot; knowledge graph reasoning; Transformer;
D O I
10.3390/app12094284
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Few-shot knowledge graph reasoning is a research focus in the field of knowledge graph reasoning. At present, in order to expand the application scope of knowledge graphs, a large number of researchers are devoted to the study of the multi-shot knowledge graph model. However, as far as we know, the knowledge graph contains a large number of missing relations and entities, and there are not many reference examples at the time of training. In this paper, our goal is to be able to infer the correct entity given a few training instances, or even only one training instance is available. Therefore, we propose an adaptive attentional network for few-shot relational learning of knowledge graphs, extracting knowledge based on traditional embedding methods, using the Transformer mechanism and hierarchical attention mechanism to obtain hidden attributes of entities, and then using a noise checker to filter out unreasonable candidate entities. Our model produces large performance improvements on the NELL-One dataset.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Relational multi-scale metric learning for few-shot knowledge graph completion
    Song, Yu
    Gui, Mingyu
    Zhang, Kunli
    Xu, Zexi
    Dai, Dongming
    Kong, Dezhi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (07) : 4125 - 4150
  • [22] Dynamic Knowledge Path Learning for Few-Shot Learning
    Li, Jingzhu
    Yin, Zhe
    Yang, Xu
    Jiao, Jianbin
    Ding, Ye
    BIG DATA MINING AND ANALYTICS, 2025, 8 (02): : 479 - 495
  • [23] Domain-Adaptive Few-Shot Learning
    Zhao, An
    Ding, Mingyu
    Lu, Zhiwu
    Xiang, Tao
    Niu, Yulei
    Guan, Jiechao
    Wen, Ji-Rong
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, : 1389 - 1398
  • [24] Few-Shot Relational Triple Extraction with Perspective Transfer Network
    Fei, Junbo
    Zeng, Weixin
    Zhao, Xiang
    Li, Xuanyi
    Xiao, Weidong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 488 - 498
  • [25] Feature Transformation Network for Few-Shot Learning
    Wang, Xiaoyan
    Wang, Hongmei
    Zhou, Daming
    IEEE ACCESS, 2021, 9 : 41913 - 41924
  • [26] Robust Compare Network for Few-Shot Learning
    Yang, Yixin
    Li, Yang
    Zhang, Rui
    Wang, Jiabao
    Miao, Zhuang
    IEEE ACCESS, 2020, 8 : 137966 - 137974
  • [27] Diversity Transfer Network for Few-Shot Learning
    Chen, Mengting
    Fang, Yuxin
    Wang, Xinggang
    Luo, Heng
    Geng, Yifeng
    Zhang, Xinyu
    Huang, Chang
    Liu, Wenyu
    Wang, Bo
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 10559 - 10566
  • [28] Learning to Compare: Relation Network for Few-Shot Learning
    Sung, Flood
    Yang, Yongxin
    Zhang, Li
    Xiang, Tao
    Torr, Philip H. S.
    Hospedales, Timothy M.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 1199 - 1208
  • [29] Spatial Attention Network for Few-Shot Learning
    He, Xianhao
    Qiao, Peng
    Dou, Yong
    Niu, Xin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: DEEP LEARNING, PT II, 2019, 11728 : 567 - 578
  • [30] Mutual Correlation Network for few-shot learning
    Chen, Derong
    Chen, Feiyu
    Ouyang, Deqiang
    Shao, Jie
    NEURAL NETWORKS, 2024, 175