共 50 条
Rapid 2D variable flip angle method for accurate and precise T1 measurements over a wide range of T1 values
被引:1
|作者:
Lena, Beatrice
[1
,2
]
Bos, Clemens
[2
]
Ferrer, Cyril J.
[2
]
Moonen, Chrit T. W.
[2
]
Viergever, Max A.
[1
]
Bartels, Lambertus W.
[1
,2
]
机构:
[1] Univ Med Ctr Utrecht, Image Sci Inst, Imaging & Oncol Div, Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Imaging & Oncol Div, Image Guided Mol Intervent Grp, Utrecht, Netherlands
关键词:
slice excitation profile;
T-1;
mapping;
variable flip angle;
D O I:
10.1002/nbm.4542
中图分类号:
Q6 [生物物理学];
学科分类号:
071011 ;
摘要:
Purpose To perform dynamic T-1 mapping using a 2D variable flip angle (VFA) method, a correction for the slice profile effect is needed. In this work we investigated the impact of flip angle selection and excitation RF pulse profile on the performance of slice profile correction when applied to T-1 mapping over a range of T-1 values. Methods A correction of the slice profile effect is proposed, based on Bloch simulation of steady-state signals. With this correction, Monte Carlo simulations were performed to assess the accuracy and precision of 2D VFA T-1 mapping in the presence of noise, for RF pulses with time-bandwidth products of 2, 3 and 10 and with flip angle pairs in the range [1 degrees-90 degrees]. To evaluate its performance over a wide range of T-1, maximum errors were calculated for six T-1 values between 50 ms and 1250 ms. The method was demonstrated using in vitro and in vivo experiments. Results Without corrections, 2D VFA severely underestimates T-1. Slice profile errors were effectively reduced with the correction based on simulations, both in vitro and in vivo. The precision and accuracy of the method depend on the nominal T-1 values, the FA pair, and the RF pulse shape. FA pairs leading to T-1 can be identified for the common RF shapes, for T-1 values between 50 ms and 1250 ms. Conclusions 2D VFA T-1 mapping with Bloch-simulation-based correction can deliver T-1 estimates that are accurate and precise to within 5% over a wide T-1 range.
引用
收藏
页数:14
相关论文