Quasi-perfect linear codes with minimum distance 4

被引:14
|
作者
Giulietti, Massimo [1 ]
Pasticci, Fabio [1 ]
机构
[1] Univ Perugia, Dipartimento Matemat & Informat, I-06123 Perugia, Italy
关键词
complete caps in projective spaces; covering radius; error-correcting codes; length function; quasi-perfect codes;
D O I
10.1109/TIT.2007.894688
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Some new infinite families of short quasi-perfect linear codes are described. Such codes provide improvements on the currently known upper bounds on the minimal length of a quasi-perfect [n, n - m, 4](q)-code when either 1) q = 16, m >= 5, in odd, or 2) q = 2(i), 7 <= i <= 15, m >= 4, or 3) q 2(2l), l >= 8, m >= 5; m, odd. As quasi-perfect [n, n - m, 4](q)-codes and complete n-caps in projective spaces PG(m. - 1, q) are equivalent objects, new upper bounds on the size of the smallest complete cap in PG(m - 1, q) are obtained.
引用
收藏
页码:1928 / 1935
页数:8
相关论文
共 50 条
  • [41] On computing the minimum distance of linear codes
    Mohri, M
    Morii, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2000, 83 (11): : 32 - 42
  • [42] Linear Induction Actuators for a Haptic Interface: a quasi-perfect transparent mechanism
    Ortega, Alberto
    Weill-Duflos, Antoine
    Haliyo, Sinan
    Regnier, Stephane
    Hayward, Vincent
    2017 IEEE WORLD HAPTICS CONFERENCE (WHC), 2017, : 575 - 580
  • [43] QUASI-PERFECT AGGREGATION AND THE CONVERGENCE APPROACH
    HENOCQ, C
    KEMPF, H
    REVUE ECONOMIQUE, 1984, 35 (05): : 911 - 927
  • [44] Terahertz quasi-perfect vortex beams
    Yang, Yongqiang
    Yang, Zhengang
    Liu, Jinsong
    INFRARED PHYSICS & TECHNOLOGY, 2024, 136
  • [45] ON QUASI-PERFECT PROPERTY OF DOUBLE-ERROR-CORRECTING GOPPA CODES AND THEIR COMPLETE DECODING
    FENG, GL
    TZENG, KK
    INFORMATION AND CONTROL, 1984, 61 (02): : 132 - 146
  • [46] Linear quantum codes of minimum distance three
    Ruihu Li
    Xueliang Li
    Zongben Xu
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (06) : 917 - 923
  • [47] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna, V
    Tikhomirov, Konstantin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (10) : 6388 - 6401
  • [48] Distribution of the Minimum Distance of Random Linear Codes
    Hao, Jing
    Huang, Han
    Livshyts, Galyna
    Tikhomirov, Konstantin
    2020 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2020, : 114 - 119
  • [49] Minimum distance decoding algorithms for linear codes
    Barg, A
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, 1997, 1255 : 1 - 14
  • [50] Construction of linear codes with large minimum distance
    Braun, M
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1687 - 1691