On some variational algebraic problems

被引:23
|
作者
Bisci, Giovanni Molica [1 ]
Repovs, Dusan [2 ,3 ]
机构
[1] Univ Reggio Calabria, Dipartimento MECMAT, I-89124 Reggio Di Calabria, Italy
[2] Univ Ljubljana, Fac Educ, Ljubljana 1001, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Ljubljana 1001, Slovenia
关键词
Discrete nonlinear boundary value problems; multiple solutions; difference equations; NONLINEAR-SYSTEM; DIFFERENCE-EQUATIONS; MULTIPLE SOLUTIONS; EXISTENCE;
D O I
10.1515/anona-2012-0028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper by exploiting critical point theory, the existence of two distinct nontrivial solutions for a nonlinear algebraic system with a parameter is established. Our goal is achieved by requiring an appropriate behavior of the nonlinear term f at zero and at infinity. Some applications to difference equations are also presented.
引用
收藏
页码:127 / 146
页数:20
相关论文
共 50 条
  • [1] On some variational problems
    Zhikov, VV
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1997, 5 (01) : 105 - 116
  • [2] Some Plebeian Variational Problems
    Villaggio, Piero
    VARIATIONAL ANALYSIS AND AEROSPACE ENGINEERING, 2009, 33 : 509 - 518
  • [3] On Some Discrete Variational Problems
    A. Pankov
    N. Zakharchenko
    Acta Applicandae Mathematica, 2001, 65 : 295 - 303
  • [4] On some discrete variational problems
    Pankov, A
    Zakharchenko, N
    ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) : 295 - 303
  • [5] ON SOME NONLOCAL VARIATIONAL PROBLEMS
    Chipot, Michel
    Gangbo, Wilfrid
    Kawohl, Bernd
    ANALYSIS AND APPLICATIONS, 2006, 4 (04) : 345 - 356
  • [6] On the regularity in some variational problems
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    ICNPAA 2016 WORLD CONGRESS: 11TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES, 2017, 1798
  • [7] SYMMETRY DECOUPLING IN LINEAR ALGEBRAIC VARIATIONAL SCATTERING PROBLEMS
    ZHAO, MS
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C-PHYSICS AND COMPUTERS, 1995, 6 (01): : 105 - 121
  • [8] Some problems in nonclassical algebraic geometry
    Plotkin B.
    Ukrainian Mathematical Journal, 2002, 54 (6) : 1019 - 1026
  • [9] Some problems in learning of algebraic operations
    Zhetpisov, K.
    Abdykeshova, D. T.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2010, 57 (01): : 19 - 25
  • [10] SOME PROBLEMS RELATIVE TO ALGEBRAIC UNITS
    NAGELL, T
    ARKIV FOR MATEMATIK, 1970, 8 (02): : 115 - &