Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images

被引:282
|
作者
Ranjbarzadeh, Ramin [1 ]
Kasgari, Abbas Bagherian [2 ]
Ghoushchi, Saeid Jafarzadeh [3 ]
Anari, Shokofeh [4 ]
Naseri, Maryam [5 ]
Bendechache, Malika [6 ]
机构
[1] Univ Guilan, Fac Engn, Dept Telecommun Engn, Rasht, Iran
[2] Allameh Tabatabai Univ, Fac Management & Accounting, Tehran, Iran
[3] Urmia Univ Technol, Fac Ind Engn, Orumiyeh, Iran
[4] Islamic Azad Univ, Dept Accounting Econ & Financial Sci, South Tehran Branch, Tehran, Iran
[5] Golestan Univ, Fac Engn, Dept Chem Engn, Aliabad Katoul, Iran
[6] Dublin City Univ, Fac Engn & Comp, Sch Comp, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
NEURAL-NETWORK; CONVOLUTIONAL NETWORKS; GAS;
D O I
10.1038/s41598-021-90428-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Brain tumor localization and segmentation from magnetic resonance imaging (MRI) are hard and important tasks for several applications in the field of medical analysis. As each brain imaging modality gives unique and key details related to each part of the tumor, many recent approaches used four modalities T1, T1c, T2, and FLAIR. Although many of them obtained a promising segmentation result on the BRATS 2018 dataset, they suffer from a complex structure that needs more time to train and test. So, in this paper, to obtain a flexible and effective brain tumor segmentation system, first, we propose a preprocessing approach to work only on a small part of the image rather than the whole part of the image. This method leads to a decrease in computing time and overcomes the overfitting problems in a Cascade Deep Learning model. In the second step, as we are dealing with a smaller part of brain images in each slice, a simple and efficient Cascade Convolutional Neural Network (C-ConvNet/C-CNN) is proposed. This C-CNN model mines both local and global features in two different routes. Also, to improve the brain tumor segmentation accuracy compared with the state-of-the-art models, a novel Distance-Wise Attention (DWA) mechanism is introduced. The DWA mechanism considers the effect of the center location of the tumor and the brain inside the model. Comprehensive experiments are conducted on the BRATS 2018 dataset and show that the proposed model obtains competitive results: the proposed method achieves a mean whole tumor, enhancing tumor, and tumor core dice scores of 0.9203, 0.9113 and 0.8726 respectively. Other quantitative and qualitative assessments are presented and discussed.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Brain Tumor Detection based on Multiple Deep Learning Models for MRI Images
    Kumar G.D.
    Mohanty S.N.
    EAI Endorsed Transactions on Pervasive Health and Technology, 2024, 10
  • [42] Classification of Brain MRI Tumor Images Based on Deep Learning PGGAN Augmentation
    Gab Allah, Ahmed M.
    Sarhan, Amany M.
    Elshennawy, Nada M.
    DIAGNOSTICS, 2021, 11 (12)
  • [43] Super-resolution of brain tumor MRI images based on deep learning
    Zhou, Zhiyi
    Ma, Anbang
    Feng, Qiuting
    Wang, Ran
    Cheng, Lilin
    Chen, Xin
    Yang, Xi
    Liao, Keman
    Miao, Yifeng
    Qiu, Yongming
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (11):
  • [44] Classification and Segmentation of MRI Images of Brain Tumors Using Deep Learning and Hybrid Approach
    Singh, Sugandha
    Saxena, Vipin
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (02) : 163 - 172
  • [45] Automatic segmentation of MRI images for brain radiotherapy planning using deep ensemble learning
    Yoganathan, S. A.
    Torfeh, Tarraf
    Paloor, Satheesh
    Hammoud, Rabih
    Al-Hammadi, Noora
    Zhang, Rui
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2025, 11 (02):
  • [46] Brain Tumor Classification and Segmentation in MRI Images using PNN
    Lavanyadevi, R.
    Machakowsalya, M.
    Nivethitha, J.
    Kumar, A. Niranjil
    2017 IEEE INTERNATIONAL CONFERENCE ON ELECTRICAL, INSTRUMENTATION AND COMMUNICATION ENGINEERING (ICEICE), 2017,
  • [47] Automatic Brain Tumor Segmentation Using Multi-scale Features and Attention Mechanism
    Li, Zhaopei
    Shen, Zhiqiang
    Wen, Jianhui
    He, Tian
    Pan, Lin
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 216 - 226
  • [48] Attention transformer mechanism and fusion-based deep learning architecture for MRI brain tumor classification system
    Tabatabaei, Sadafossadat
    Rezaee, Khosro
    Zhu, Min
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 86
  • [49] A review on brain tumor segmentation of MRI images
    Wadhwa, Anjali
    Bhardwaj, Anuj
    Verma, Vivek Singh
    MAGNETIC RESONANCE IMAGING, 2019, 61 : 247 - 259
  • [50] Segmentation of Brain Tumor from MRI Images
    Asthana, Pallavi
    Vashisth, Sharda
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 262 - 266