Parameter estimation of biological neuron models with bursting and spiking

被引:0
|
作者
Fujikawa, Hiroyuki [1 ]
Mitsunaga, Kouichi [2 ]
Suemitsu, Haruo [1 ]
Matsuo, Takami [1 ]
机构
[1] Oita Univ, Dept Human Wel Engn, Oita, Japan
[2] Oita Inst Technol, Dept Control Engn, Oita, Japan
关键词
Hindmarsh-Rose model; tonic bursting; tonic spiking; adaptive observer;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this brief, we present an estimator of the parameters of the Hindmarsh-Rose model using an adaptive observer. This estimator allows us to distinguish the firing patterns with early-time dynamic behaviors. The MATLAB simulations demonstrate the estimation performance of the proposed adaptive observer.
引用
收藏
页码:2130 / +
页数:3
相关论文
共 50 条
  • [41] Control of network bursting discharges by local electrical stimulation in spiking neuron network
    Bazhanova, M., V
    Gordleeva, S. Yu
    Kazantsev, V. B.
    Lobov, S. A.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2021, 29 (03): : 428 - 439
  • [42] Geometrical Model of Spiking and Bursting Neuron on a Mug-Shaped Branched Manifold
    Gheouali, Mohamed
    Benzekri, Tounsia
    Lozi, Rene
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (15):
  • [43] On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron
    Innocenti, G.
    Genesio, R.
    CHAOS, 2009, 19 (02)
  • [44] Spiking and bursting of a fractional order of the modified FitzHugh-Nagumo neuron model
    Alidousti J.
    Ghaziani R.K.
    Mathematical Models and Computer Simulations, 2017, 9 (3) : 390 - 403
  • [45] Firing pattern estimation of biological neuron models by adaptive observer
    Mitsunaga, Kouichi
    Totoki, Yusuke
    Matsuo, Takarni
    NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 83 - +
  • [46] Parameter estimation in rational models of molecular biological systems
    Wu, Fang-Xiang
    Mu, Lei
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 3263 - 3266
  • [47] Stability of point process spiking neuron models
    Chen, Yu
    Xin, Qi
    Ventura, Valerie
    Kass, Robert E.
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2019, 46 (01) : 19 - 32
  • [48] Optimal control methods for nonlinear parameter estimation in biophysical neuron models
    Kadakia, Nirag
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (09)
  • [49] Parameter estimation in models of biological oscillators: an automated regularised estimation approach
    Jake Alan Pitt
    Julio R. Banga
    BMC Bioinformatics, 20
  • [50] Spiking Neuron Mathematical Models: A Compact Overview
    Fortuna, Luigi
    Buscarino, Arturo
    BIOENGINEERING-BASEL, 2023, 10 (02):