Auditing Anti-Malware Tools by Evolving Android Malware and Dynamic Loading Technique

被引:50
|
作者
Xue, Yinxing [1 ]
Meng, Guozhu [1 ]
Liu, Yang [1 ]
Tan, Tian Huat [2 ]
Chen, Hongxu [1 ]
Sun, Jun [3 ]
Zhang, Jie [1 ]
机构
[1] Nanyang Technol Univ, Singapore 639798, Singapore
[2] Acronis Software, Singapore 038988, Singapore
[3] Singapore Univ Technol & Design, Singapore 487372, Singapore
基金
新加坡国家研究基金会;
关键词
Android feature model; defense capability; malware generation; dynamic loading; linear programming;
D O I
10.1109/TIFS.2017.2661723
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Although a previous paper shows that existing antimalware tools (AMTs) may have high detection rate, the report is based on existing malware and thus it does not imply that AMTs can effectively deal with future malware. It is desirable to have an alternative way of auditing AMTs. In our previous paper, we use malware samples from android malware collection GENOME to summarize a malware meta-model for modularizing the common attack behaviors and evasion techniques in reusable features. We then combine different features with an evolutionary algorithm, in which way we evolve malware for variants. Previous results have shown that the existing AMTs only exhibit detection rate of 20%-30% for 10 000 evolved malware variants. In this paper, based on the modularized attack features, we apply the dynamic code generation and loading techniques to produce malware, so that we can audit the AMTs at runtime. We implement our approach, named MYSTIQUE-S, as a service-oriented malware generation system. MYSTIQUE-S automatically selects attack features under various user scenarios and delivers the corresponding malicious payloads at runtime. Relying on dynamic code binding (via service) and loading (via reflection) techniques, MYSTIQUE-S enables dynamic execution of payloads on user devices at runtime. Experimental results on real-world devices show that existing AMTs are incapable of detecting most of our generated malware. Last, we propose the enhancements for existing AMTs.
引用
收藏
页码:1529 / 1544
页数:16
相关论文
共 50 条
  • [31] HamDroid: permission-based harmful android anti-malware detection using neural networks
    Seraj, Saeed
    Khodambashi, Siavash
    Pavlidis, Michalis
    Polatidis, Nikolaos
    Neural Computing and Applications, 2022, 34 (18): : 15165 - 15174
  • [32] HamDroid: permission-based harmful android anti-malware detection using neural networks
    Seraj, Saeed
    Khodambashi, Siavash
    Pavlidis, Michalis
    Polatidis, Nikolaos
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (18): : 15165 - 15174
  • [33] HamDroid: permission-based harmful android anti-malware detection using neural networks
    Saeed Seraj
    Siavash Khodambashi
    Michalis Pavlidis
    Nikolaos Polatidis
    Neural Computing and Applications, 2022, 34 : 15165 - 15174
  • [34] Andro-AutoPsy: Anti-malware system based on similarity matching of malware and malware creator-centric information
    Jang, Jae-Wook
    Kang, Hyunjae
    Woo, Jiyoung
    Mohaisen, Aziz
    Kim, Huy Kang
    DIGITAL INVESTIGATION, 2015, 14 : 17 - 35
  • [35] Evading Anti-Malware Engines With Deep Reinforcement Learning
    Fang, Zhiyang
    Wang, Junfeng
    Li, Boya
    Wu, Siqi
    Zhou, Yingjie
    Huang, Haiying
    IEEE ACCESS, 2019, 7 : 48867 - 48879
  • [36] Comprehensive review and analysis of anti-malware apps for smartphones
    Mohammed Talal
    A. A. Zaidan
    B. B. Zaidan
    O. S. Albahri
    M. A. Alsalem
    A. S. Albahri
    A. H. Alamoodi
    M. L. M. Kiah
    F. M. Jumaah
    Mussab Alaa
    Telecommunication Systems, 2019, 72 : 285 - 337
  • [37] Comprehensive review and analysis of anti-malware apps for smartphones
    Talal, Mohammed
    Zaidan, A. A.
    Zaidan, B. B.
    Albahri, O. S.
    Alsalem, M. A.
    Albahri, A. S.
    Alamoodi, A. H.
    Kiah, M. L. M.
    Jumaah, F. M.
    Alaa, Mussab
    TELECOMMUNICATION SYSTEMS, 2019, 72 (02) : 285 - 337
  • [38] Static and Dynamic Analysis of Android Malware
    Kapratwar, Ankita
    Di Troia, Fabio
    Stamp, Mark
    ICISSP: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS SECURITY AND PRIVACY, 2017, : 653 - 662
  • [39] A Large-Scale Empirical Study on the Effects of Code Obfuscations on Android Apps and Anti-Malware Products
    Hammad, Mahmoud
    Garcia, Joshua
    Malek, Sam
    PROCEEDINGS 2018 IEEE/ACM 40TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING (ICSE), 2018, : 421 - 431
  • [40] Effect of anti-malware software on infectious nodes in cloud environment
    Abazari, Farzaneh
    Analoui, Morteza
    Takabi, Hassan
    COMPUTERS & SECURITY, 2016, 58 : 139 - 148