WAKE ALLEVIATING DEVICES FOR OFFSHORE WIND TURBINES

被引:0
|
作者
Klimchenko, Vera [1 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The wake behind an offshore wind turbine can persist for several turbine diameters, so decreasing the space between wind turbines in an array leads to strong wake-turbine interactions and a decrease in efficiency of the wind turbines downstream. The dominant structures in the wake of a horizontal axis wind turbine are large helical tip vortices. Implementing devices on the blade tips of a wind turbine can induce mixing into the tip vortex core, encouraging breakup of the tip vortices and wake dissipation. A wake that dissipated more quickly can maximize the farm-level efficiency by allowing more turbines to be installed in a fixed area. This study focuses on quantifying the effectiveness of three different blade-mounted devices in speeding up the dissipation of the wake of an offshore horizontal axis wind turbine. Experiments were conducted in a low speed, low turbulence wind tunnel. A small scale wind turbine model was designed using optimum rotor theory to match the tip speed ratio of an offshore wind turbine. The baseline case consisted of a wind turbine rotor without blade-mounted devices. It was tested in the wind tunnel under a range of free stream conditions, and the rotational speed was measured to determine the operational tip speed ratios. A second test case was the same rotor, but with winglets at the blade tips designed to weaken the tip vortices. A third test case was the baseline case rotor with serrated blade tips, designed to introduce turbulence into the core of the tip vortex. Smoke flow visualization and particle image velocimetry (PIV) were used to observe the dissipation of the turbines' wake. The effectiveness of the blade-mounted devices on wake dissipation was evaluated with a special interest in optimizing the overall energy harvested by an offshore wind farm of a fixed area. It was shown that both tip treatments tested have the capacity to reenergize the flow and decrease the momentum deficit in the wake of a wind turbine
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Optimization of maintenance scheduling for offshore wind turbines considering the wake effect of arbitrary wind direction
    Ge, Xiaolin
    Chen, Quan
    Fu, Yang
    Chung, C. Y.
    Mi, Yang
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 184
  • [12] Optimal Control of Wind Turbines for Minimizing Overall Wake Effect Losses in Offshore Wind Farms
    Serrano Gonzalez, Javier
    Burgos Payan, Manuel
    Riquelme Santos, Jesus
    2013 IEEE EUROCON, 2013, : 1129 - 1133
  • [13] Numerical investigations on control strategies of wake deviation for large wind turbines in an offshore wind farm
    Wang, Yuanbo
    Miao, Weipao
    Ding, Qinwei
    Li, Chun
    Xiang, Bin
    OCEAN ENGINEERING, 2019, 173 : 794 - 801
  • [14] WAKE INTERACTION BETWEEN TWO FLOATING OFFSHORE WIND TURBINES WITH BLADE DEFORMATION
    Huang, Yang
    Xiao, Qing
    Wan, Decheng
    PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 8, 2022,
  • [15] Vertical wake deflection for offshore floating wind turbines by differential ballast control
    Nanos, Emmanouil M.
    Letizia, Stefano
    Clemente, Daniel J. Barreiro
    Wang, Chengyu
    Rotea, Mario
    Iungo, Valerio I.
    Bottasso, Carlo L.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [16] Maintenance routing stochastic programming for offshore wind turbines considering wake effect
    Ge X.
    Chen Q.
    Fu Y.
    Wang D.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (12): : 183 - 191
  • [17] Observation and modelling of asymmetric loading on large offshore wind turbines in wake conditions
    Bernard, V
    Andersen, S. J.
    Leon, J. P. Murcia
    Beaudet, L.
    Verelst, D.
    Iliopoulos, A.
    SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024, 2024, 2767
  • [18] Development of a free vortex wake method code for offshore floating wind turbines
    Sebastian, T.
    Lackner, M. A.
    RENEWABLE ENERGY, 2012, 46 : 269 - 275
  • [19] A Review of Experiment Methods, Simulation Approaches and Wake Characteristics of Floating Offshore Wind Turbines
    Chen, Xiaoxu
    Wang, Tengyuan
    Cai, Chang
    Liu, Jianshuang
    Gao, Xiaoxia
    Guo, Naizhi
    Li, Qingan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2025, 13 (02)
  • [20] Numerical Study of Turbulent Wake of Offshore Wind Turbines and Retention Time of Larval Dispersion
    Ajmi, Souha
    Boutet, Martial
    Bennis, Anne-Claire
    Dauvin, Jean-Claude
    Pezy, Jean-Philippe
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (11)