Soft prime and semiprime int-ideals of a ring

被引:4
|
作者
Ghosh, Jayanta [1 ]
Mandal, Dhananjoy [1 ]
Samanta, Tapas Kumar [2 ]
机构
[1] Univ Calcutta, Dept Pure Math, 35 Ballygunge Circular Rd, Kolkata 700019, India
[2] Uluberia Coll, Dept Math, Howrah 711315, W Bengal, India
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 01期
关键词
Soft int-ideal; Soft prime int-ideal; Soft semiprime int-ideal; Soft radical; SETS;
D O I
10.3934/math.2020050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, some properties of soft radical of a soft int-ideal have been developed and soft prime int-ideal, soft semiprime int-ideal of a ring are defined. Several characterizations of soft prime (soft semiprime) int-ideals are investigated. Also it is shown that the direct and inverse images of soft prime (soft semiprime) int-ideals under homomorphism remains invariant.
引用
收藏
页码:732 / 745
页数:14
相关论文
共 50 条
  • [11] FUZZY IDEALS AND FUZZY PRIME IDEALS OF A RING
    DIXIT, VN
    KUMAR, R
    AJMAL, N
    FUZZY SETS AND SYSTEMS, 1991, 44 (01) : 127 - 138
  • [12] PRIME IDEALS IN RING EXTENSIONS
    WARFIELD, RB
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 28 (DEC): : 453 - 460
  • [13] On one sided ideals of a semiprime ring with generalized derivations
    Ali, Asma
    De Filippis, Vincenzo
    Shujat, Faiza
    AEQUATIONES MATHEMATICAE, 2013, 85 (03) : 529 - 537
  • [14] PRIME IDEALS IN RING EXTENSIONS
    MCQUILLAN, DL
    ARCHIV DER MATHEMATIK, 1979, 33 (02) : 121 - 126
  • [15] On the prime ideals in a commutative ring
    Dobbs, DE
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2000, 43 (03): : 312 - 319
  • [16] Fuzzy prime ideals of a ring
    1600, (37):
  • [17] Fuzzy bipolar soft semiprime ideals in ordered semigroups
    Aziz-ul-Hakim
    Khan, H.
    Ahmad, I.
    Khan, A.
    HELIYON, 2021, 7 (04)
  • [18] FUZZY PRIME IDEALS OF A RING
    MALIK, DS
    MORDESON, JN
    FUZZY SETS AND SYSTEMS, 1990, 37 (01) : 93 - 98
  • [19] ON COMPLETELY PRIME IDEALS OF A RING
    ANDRUNAKIEVICH, VA
    MATHEMATICS OF THE USSR-SBORNIK, 1983, 121 (3-4): : 285 - 290
  • [20] Characterisation of fuzzy semiprime ideals of the ring of integers Z
    Dutta, TK
    Biswas, BK
    FUZZY SETS AND SYSTEMS, 1999, 105 (01) : 187 - 189