BEAM-FORMING ERRORS IN MURCHISON WIDEFIELD ARRAY PHASED ARRAY ANTENNAS AND THEIR EFFECTS ON EPOCH OF REIONIZATION SCIENCE

被引:13
|
作者
Neben, Abraham R. [1 ]
Hewitt, Jacqueline N. [1 ]
Bradley, Richard F. [2 ,3 ]
Dillon, Joshua S. [1 ,4 ,5 ]
Bernardi, G. [6 ,7 ]
Bowman, J. D. [8 ]
Briggs, F. [9 ]
Cappallo, R. J. [10 ]
Corey, B. E. [10 ]
Deshpande, A. A. [11 ]
Goeke, R. [1 ]
Greenhill, L. J. [12 ]
Hazelton, B. J. [13 ]
Johnston-Hollitt, M. [14 ]
Kaplan, D. L. [15 ]
Lonsdale, C. J. [10 ]
McWhirter, S. R. [10 ]
Mitchell, D. A. [16 ,20 ]
Morales, M. F. [13 ]
Morgan, E. [1 ]
Oberoi, D. [17 ]
Ord, S. M. [18 ,20 ]
Prabu, T. [11 ]
Shankar, N. Udaya [11 ]
Srivani, K. S. [11 ]
Subrahmanyan, R. [11 ]
Tingay, S. J. [18 ]
Wayth, R. B. [18 ,20 ]
Webster, R. L. [19 ,20 ]
Williams, A. [18 ,20 ]
Williams, C. L. [1 ]
机构
[1] MIT, Kavli Inst Astrophys & Space Res, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Univ Virginia, Dept Elect & Comp Engn, Charlottesville, VA 22904 USA
[3] Natl Radio Astron Obs, Charlottesville, VA USA
[4] Univ Calif Berkeley, Dept Astron, 601 Campbell Hall, Berkeley, CA 94720 USA
[5] Berkeley Ctr Cosmol Phys, Berkeley, CA USA
[6] SKA SA, ZA-7405 Cape Town, South Africa
[7] Rhodes Univ, Dept Phys & Elect, POB 94, ZA-6140 Grahamstown, South Africa
[8] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA
[9] Australian Natl Univ, Res Sch Astron & Astrophys, Canberra, ACT 2611, Australia
[10] MIT, Haystack Observ, Westford, MA 01886 USA
[11] Raman Res Inst, Bangalore 560080, Karnataka, India
[12] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[13] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[14] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6140, New Zealand
[15] Univ Wisconsin, Dept Phys, Milwaukee, WI 53201 USA
[16] CSIRO Astron & Space Sci CASS, POB 76, Epping, NSW 1710, Australia
[17] Tata Inst Fundamental Res, Natl Ctr Radio Astrophys, Pune 411007, Maharashtra, India
[18] Curtin Univ, Int Ctr Radio Astron Res, Bentley, WA 6102, Australia
[19] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
[20] ARC Ctr Excellence All Sky Astrophys CAASTRO, Sydney, NSW, Australia
来源
ASTROPHYSICAL JOURNAL | 2016年 / 820卷 / 01期
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
cosmology: observations; dark ages; reionization; first stars; instrumentation: interferometers; methods: statistical; techniques: interferometric; 21 CM EPOCH; POWER SPECTRUM; PRECISION; CALIBRATION; COSMOLOGY; SENSITIVITY; LIMITATIONS; FOREGROUNDS; SIMULATION; EMISSION;
D O I
10.3847/0004-637X/820/1/44
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Accurate antenna beam models are critical for radio observations aiming to isolate the redshifted 21 cm spectral line emission from the Dark Ages and the Epoch of Reionization (EOR) and unlock the scientific potential of 21 cm cosmology. Past work has focused on characterizing mean antenna beam models using either satellite signals or astronomical sources as calibrators, but antenna-to-antenna variation due to imperfect instrumentation has remained unexplored. We characterize this variation for the Murchison Widefield Array (MWA) through laboratory measurements and simulations, finding typical deviations of the order of +/- 10%-20% near the edges of the main lobe and in the sidelobes. We consider the ramifications of these results for image-and power spectrum-based science. In particular, we simulate visibilities measured by a 100 m baseline and find that using an otherwise perfect foreground model, unmodeled beam-forming errors severely limit foreground subtraction accuracy within the region of Fourier space contaminated by foreground emission (the "wedge"). This region likely contains much of the cosmological signal, and accessing it will require measurement of per-antenna beam patterns. However, unmodeled beam-forming errors do not contaminate the Fourier space region expected to be free of foreground contamination (the "EOR window"), showing that foreground avoidance remains a viable strategy.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Phased Array Antenna Modules with Dual Ports for Independent Transmitting and Receiving Beam-Forming Networks
    Chou, Hsi-Tseng
    Chen, Yen-Ting
    2017 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC COMPATIBILITY (APEMC), 2017, : 278 - 280
  • [32] Photonic RF phase shifter for harmonic downconversion in phased array antenna beam-forming applications
    Fuster, JM
    Marti, J
    ELECTRONICS LETTERS, 1997, 33 (17) : 1426 - 1428
  • [33] Research and Implementation of S-band Active Phased Array Antenna Beam-forming System
    Liu, Yuting
    Yang, Haining
    2024 IEEE INTERNATIONAL SYMPOSIUM ON ANTENNAS AND PROPAGATION AND INC/USNCURSI RADIO SCIENCE MEETING, AP-S/INC-USNC-URSI 2024, 2024, : 2789 - 2790
  • [34] On influence of structural errors for hexagonal phased array antennas
    Hu, Xuemei
    Kang, Mingkui
    Wang, Wei
    Wang, Meng
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2013, 39 (12): : 1629 - 1632
  • [35] A Combined Switched Beam-forming and Adaptive Beam-forming Algorithm for OFDM Systems with Antenna array
    Liu, Shenghai
    Feng, Suili
    Ye, Wu
    2007 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-15, 2007, : 89 - 92
  • [36] PHOTONIC IN-PHASE QUADRATURE BEAM-FORMING NETWORK FOR PHASED-ARRAY ANTENNA APPLICATIONS
    COWARD, JF
    YEE, TK
    OPTICAL ENGINEERING, 1993, 32 (06) : 1298 - 1302
  • [37] Advanced, efficient primary beam modeling for the Murchison Widefield Array radio telescope
    Wayth, Randall
    Colegate, Timothy
    Sokolowski, Marcin
    Sutinjo, Adrian
    Ung, Daniel
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2016, : 431 - 434
  • [38] Null beam forming by phase control of selected elements in phased-array antennas
    Chiba, Isamu
    Mano, Seiji
    Electronics and Communications in Japan, Part I: Communications (English translation of Denshi Tsushin Gakkai Ronbunshi), 1991, 74 (12): : 23 - 32
  • [39] Calibration method of mutual coupling in beam forming network for phased-array antennas
    Matsumoto, Y
    Yamazaki, I
    Hama, S
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART II-ELECTRONICS, 2001, 84 (01): : 40 - 47
  • [40] Science with the Murchison Widefield Array: Phase I results and Phase II opportunities
    Beardsley, A. P.
    Johnston-Hollitt, M.
    Trott, C. M.
    Pober, J. C.
    Morgan, J.
    Oberoi, D.
    Kaplan, D. L.
    Lynch, C. R.
    Anderson, G. E.
    McCauley, P., I
    Croft, S.
    James, C. W.
    Wong, O., I
    Tremblay, C. D.
    Norris, R. P.
    Cairns, I. H.
    Lonsdale, C. J.
    Hancock, P. J.
    Gaensler, B. M.
    Bhat, N. D. R.
    Li, W.
    Hurley-Walker, N.
    Callingham, J. R.
    Seymour, N.
    Yoshiura, S.
    Joseph, R. C.
    Takahashi, K.
    Sokolowski, M.
    Miller-Jones, J. C. A.
    Chauhan, J., V
    Bojicic, I
    Filipovic, M. D.
    Leahy, D.
    Su, H.
    Tian, W. W.
    McSweeney, S. J.
    Meyers, B. W.
    Kitaeff, S.
    Vernstrom, T.
    Gurkan, G.
    Heald, G.
    Xue, M.
    Riseley, C. J.
    Duchesne, S. W.
    Bowman, J. D.
    Jacobs, D. C.
    Crosse, B.
    Emrich, D.
    Franzen, T. M. O.
    Horsley, L.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2019, 36