Experimental study of subcooled flow boiling heat transfer on micro-pin-finned surfaces in short-term microgravity

被引:26
|
作者
Zhang, Yonghai [1 ]
Liu, Bin [1 ]
Zhao, Jianfu [2 ,4 ]
Deng, Yueping [3 ]
Wei, Jinjia [1 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Chem Engn & Technol, Xian 710049, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Inst Mech, CAS Key Lab Micrograv, Beijing 100190, Peoples R China
[3] Xicrn Jiaotong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Shaanxi, Peoples R China
[4] Univ Chinese Acad Sci, Sch Engn Sci, 19A Yuquan Rd, Beijing 00049, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Microgravity; Flow boiling; Micro-pin-fins; Heat transfer; Critical heat flux; BUBBLE DYNAMICS; SILICON CHIPS; 2-PHASE FLOW; FLUX; GRAVITY; SPACE; FC-72; BEHAVIOR; PLAIN; FINS;
D O I
10.1016/j.expthermflusci.2018.05.003
中图分类号
O414.1 [热力学];
学科分类号
摘要
The flow boiling heat transfer of subcooled air-dissolved FC-72 on micro-pin-finned surfaces was studied in microgravity by utilizing the drop tower facility in Beijing. The micro-pin-fins with the dimension of 30 x 30 x 60 mu m(3) (width x thickness x height), named PF30-60, were fabricated on a silicon chip by using the dry etching technique. For comparison, experiments of flow boiling heat transfer in terrestrial gravity were also conducted. The effects of inlet velocity on both flow boiling heat transfer and bubble behavior were explored. It was found that gravity has nearly no effect on flow boiling heat transfer for the departure of the inertial-force dominant bubbles in the low and moderate heat fluxes regions. In contrast, in the high-heat-flux region, the flow boiling heat transfer deteriorates and the critical heat flux (CHF) decreases due to the bubble accumulation in the channel. For PF30-60 at V = 0.5 m/s, the CHF point can be inferred to be between 20.8 and 24.5 W/cm(2), which is 63.0-74.2% of that in normal gravity. Regarding PF30-60 at V = 1.0 m/s, the CHF point can be inferred to be between 25.4 and 31.6 W/cm(2), which is 67.6-84.0% of that in normal gravity. The impact of gravity on CHF is closely linked to the channel geometry parameter and surface modification. The dimensionless numbers, Ch (Channel number) and Sf (Surface number), were proposed to describe the effect of the channel geometry and surface modification on the ratio of CHF in microgravity to that in normal gravity (CHF mu g/CHF1g). An empirical correlation based on We (Weber number), Ch and Sf was proposed to predict the value of CHF mu g/CHF1g ratio in good agreement with the experimental data. This study provides a new perspective to determine the threshold inlet velocity of inertial-force-dominant flow boiling under different experimental conditions at different gravity levels.
引用
收藏
页码:417 / 430
页数:14
相关论文
共 50 条
  • [1] Nucleate Pool Boiling Heat Transfer on a Micro-Pin-Finned Surface in Short-Term Microgravity
    Zhang, Yonghai
    Zhao, Jianfu
    Wei, Jinjia
    Xue, Yanfang
    HEAT TRANSFER ENGINEERING, 2017, 38 (06) : 594 - 610
  • [2] Enhanced flow boiling heat transfer with jet impingement on micro-pin-finned surfaces
    Guo, D.
    Wei, J. J.
    Zhang, Y. H.
    APPLIED THERMAL ENGINEERING, 2011, 31 (11-12) : 2042 - 2051
  • [3] EXPERIMENTAL STUDY OF FLOW BOILING HEAT TRANSFER COEFFICIENT OF FC-72 OVER MICRO-PIN-FINNED SURFACES
    Xue, Y. F.
    Yuan, M. Z.
    Wei, J. J.
    PROCEEDINGS OF THE ASME INTERNATIONAL HEAT TRANSFER CONFERENCE - 2010, VOL 1: BIO HEAT TRANSFER, BOILING HEAT TRANSFER, COMPUTATIONAL HEAT TRANSFER, 2010, : 221 - 228
  • [4] Experimental Study of Subcooled Flow Boiling Heat Transfer on a Smooth Surface in Short-Term Microgravity
    Yonghai Zhang
    Bin Liu
    Jianfu Zhao
    Yueping Deng
    Jinjia Wei
    Microgravity Science and Technology, 2018, 30 : 793 - 805
  • [5] Experimental Study of Subcooled Flow Boiling Heat Transfer on a Smooth Surface in Short-Term Microgravity
    Zhang, Yonghai
    Liu, Bin
    Zhao, Jianfu
    Deng, Yueping
    Wei, Jinjia
    MICROGRAVITY SCIENCE AND TECHNOLOGY, 2018, 30 (06) : 793 - 805
  • [6] Flow boiling heat transfer characteristics on micro-pin-finned surfaces in a horizontal narrow microchannel
    Ma, Xiang
    Ji, Xinyu
    Wang, Jinyu
    Fang, Jiabin
    Zhang, Yonghai
    Wei, Jinjia
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 194
  • [7] Flow boiling heat transfer characteristics on micro-pin-finned surfaces in a horizontal narrow microchannel
    Ma, Xiang
    Ji, Xinyu
    Wang, Jinyu
    Fang, Jiabin
    Zhang, Yonghai
    Wei, Jinjia
    International Journal of Heat and Mass Transfer, 2022, 194
  • [8] Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces
    Ma, Aixiang
    Wei, Jinjia
    Yuan, Minzhe
    Fang, Jiabin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2009, 52 (13-14) : 2925 - 2931
  • [9] Review of enhanced boiling heat transfer over micro-pin-finned surfaces
    Wei J.
    Zhang Y.
    Huagong Xuebao/CIESC Journal, 2016, 67 (01): : 97 - 108
  • [10] Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure
    Kong, Xin
    Zhang, Yonghai
    Wei, Jinjia
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2018, 91 : 9 - 19