Deep Transfer Network With Adaptive Joint Distribution Adaptation: A New Process Fault Diagnosis Model

被引:22
|
作者
Li, Shijin [1 ]
Yu, Jianbo [1 ]
机构
[1] Tongji Univ, Sch Mech Engn, Shanghai 201804, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Fault diagnosis; Convolution; Employee welfare; Training; Testing; Generators; Adversarial learning; domain adaption; process fault diagnosis; transfer learning (TL); NEURAL-NETWORKS; ALIGNMENT;
D O I
10.1109/TIM.2022.3157007
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Distribution discrepancy between training data and testing data caused by varying working conditions limits the wide applications of deep learning-based methods for process fault diagnosis. Generally, this issue is addressed by transfer learning (TL) effectively. However, previous works on TL mainly focus on aligning the marginal distribution only or ignoring the different impacts of the marginal and conditional distributions of the data. Thus, it remains challenging to reduce domain shifts by considering marginal and conditional distributions adaptatively and simultaneously. In this article, a novel deep transfer network (DTN) with adaptive joint distribution adaptation (AJDA) is proposed to solve the problem of process fault diagnosis under varying working conditions. First, an adaptive joint distribution module is proposed to implement domain adaptation both in feature space and label space. AJDA not only aligns the marginal and conditional distribution simultaneously but also quantifies the importance of the two distributions. Moreover, a novel feature generator, self-calibrated-based 1-D convolutional neural network (SC-1DCNN), is developed to effectively learn shared feature representations from the process data. The adversarial training with gradient penalty is adopted to guide SC-1DCNN to provide domain-invariant features between the two domains. The testing results on four experimental cases under varying working conditions, including two simulation cases and two real cases, have demonstrated the effectiveness of AJDA in process fault diagnosis.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Transfer Learning Method for Fault Diagnosis of Analog Circuit Using Deep Subdomain Adaptation Network
    Chen, Weizheng
    Han, Xu
    Zhao, Guangquan
    Peng, Xiyuan
    2023 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM, 2023, : 264 - 271
  • [22] Adaptive multiscale convolutional neural network model for chemical process fault diagnosis
    Ruoshi Qin
    Jinsong Zhao
    ChineseJournalofChemicalEngineering, 2022, 50 (10) : 398 - 411
  • [23] Adaptive multiscale convolutional neural network model for chemical process fault diagnosis
    Qin, Ruoshi
    Zhao, Jinsong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 50 : 398 - 411
  • [24] Deep Model Based Domain Adaptation for Fault Diagnosis
    Lu, Weining
    Liang, Bin
    Cheng, Yu
    Meng, Deshan
    Yang, Jun
    Zhang, Tao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (03) : 2296 - 2305
  • [25] Deep convolutional neural network model based chemical process fault diagnosis
    Wu, Hao
    Zhao, Jinsong
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 115 : 185 - 197
  • [26] A joint weighted transfer model for open-set adaptation fault diagnosis of rotating machinery
    Liu, Xiaoyang
    Liu, Shulin
    Xiang, Jiawei
    Miao, Zhonghua
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (04)
  • [27] Deep Adversarial Subdomain Adaptation Network for Intelligent Fault Diagnosis
    Liu, Yanxu
    Wang, Yu
    Chow, Tommy W. S.
    Li, Baotong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (09) : 6038 - 6046
  • [28] A Balanced Deep Transfer Network for Bearing Fault Diagnosis
    Yang, Shaopu
    Cui, Zhaoyang
    Gu, Xiaohui
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [29] TRANSFER LEARNING ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON DEEP DOMAIN ADAPTIVE NETWORK
    Liao, Yu
    Geng, Jiahao
    Guo, Li
    Geng, Bing
    Cui, Kun
    Li, Runze
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 209 - 225
  • [30] A new multichannel deep adaptive adversarial network for cross-domain fault diagnosis
    Han, Baokun
    Xing, Shuo
    Wang, Jinrui
    Zhang, Zongzhen
    Bao, Huaiqian
    Zhang, Xiao
    Jiang, Xingwang
    Liu, Zongling
    Yang, Zujie
    Ma, Hao
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (06)