A large deformation viscoelastic model for double-network hydrogels

被引:135
|
作者
Mao, Yunwei [1 ]
Lin, Shaoting [1 ]
Zhao, Xuanhe [1 ]
Anand, Lallit [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Double-network hydrogels; Elasticity; Viscoelasticity; CONSTITUTIVE MODEL; STRETCH BEHAVIOR; TOUGH;
D O I
10.1016/j.jmps.2016.12.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal micro damage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.
引用
收藏
页码:103 / 130
页数:28
相关论文
共 50 条
  • [41] Mechanically tough double-network hydrogels with high electronic conductivity
    Kishi, Ryoichi
    Kubota, Kazuma
    Miura, Toshiaki
    Yamaguchi, Tomohiko
    Okuzaki, Hidenori
    Osada, Yoshihito
    JOURNAL OF MATERIALS CHEMISTRY C, 2014, 2 (04) : 736 - 743
  • [42] Hybrid double-network hydrogels with strong mechanical and antifouling properties
    Chen, Hong
    Yang, Fengyu
    Chen, Qiang
    Hu, Rundong
    Zhang, Mingzhen
    Ma, Jie
    Ren, Baiping
    Jiang, Binbo
    Zheng, Jie
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [43] Anisotropic Double-Network Hydrogels via Controlled Orientation of a Physical Sacrificial Network
    King, Daniel R.
    Takahashi, Riku
    Ikai, Takuma
    Fukao, Kazuki
    Kurokawa, Takayuki
    Gong, Jian Ping
    ACS APPLIED POLYMER MATERIALS, 2020, 2 (06) : 2350 - 2358
  • [44] A multiscale polymerization framework towards network structure and fracture of double-network hydrogels
    Mingzhen Zhang
    Dong Zhang
    Hong Chen
    Yanxian Zhang
    Yonglan Liu
    Baiping Ren
    Jie Zheng
    npj Computational Materials, 7
  • [45] A multiscale polymerization framework towards network structure and fracture of double-network hydrogels
    Zhang, Mingzhen
    Zhang, Dong
    Chen, Hong
    Zhang, Yanxian
    Liu, Yonglan
    Ren, Baiping
    Zheng, Jie
    NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
  • [46] Self-Healable and Conductive Double-Network Hydrogels with Bioactive Properties
    Rahman, Aminur
    Solaiman
    Foyez, Tahmina
    Susan, Md. Abu Bin Hasan
    Imran, Abu Bin
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2020, 221 (17)
  • [47] Direct Observation on the Surface Fracture of Ultrathin Film Double-Network Hydrogels
    Liang, Songmiao
    Wu, Zi Liang
    Hu, Jian
    Kurokawa, Takayuki
    Yu, Qiu Ming
    Gong, Jian Ping
    MACROMOLECULES, 2011, 44 (08) : 3016 - 3020
  • [48] Conductive-Polymer-Based Double-Network Hydrogels for Wearable Supercapacitors
    Quan, Bu
    Du, Linjie
    Zhou, Zixuan
    Sun, Xin
    Travas-Sejdic, Jadranka
    Zhu, Bicheng
    GELS, 2024, 10 (11)
  • [49] Physical dynamic double-network hydrogels as dressings to facilitate tissue repair
    Baolin Guo
    Yongping Liang
    Ruonan Dong
    Nature Protocols, 2023, 18 : 3322 - 3354
  • [50] Mechanoresponsive resonance differences in double-network hydrogels towards multipartite dynamics
    Xing, Ziyu
    Li, Peizhao
    Lu, Haibao
    Fu, Yong Qing
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (46)