Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry

被引:45
|
作者
Patty, C. H. Lucas [1 ]
Luo, David A. [2 ]
Snik, Frans [3 ]
Ariese, Freek [4 ]
Buma, Wybren Jan [5 ]
ten Kate, Inge Loes [6 ]
van Spanning, Rob J. M. [7 ]
Sparks, William B. [8 ]
Germer, Thomas A. [9 ]
Garab, Gyoz [10 ,11 ]
Kudenov, Michael W. [2 ]
机构
[1] Vrije Univ Amsterdam, Mol Cell Physiol, Boelelaan 1108, NL-1081 HZ Amsterdam, Netherlands
[2] North Carolina State Univ, Dept Elect & Comp Engn, Opt Sensing Lab, Raleigh, NC 27695 USA
[3] Leiden Univ, Leiden Observ, POB 9513, NL-2300 RA Leiden, Netherlands
[4] Vrije Univ Amsterdam, LaserLaB, Boelelaan 1083, NL-1081 HV Amsterdam, Netherlands
[5] Univ Amsterdam, Photon Grp, HIMS, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[6] Univ Utrecht, Dept Earth Sci, Budapestlaan 4, NL-3584 CD Utrecht, Netherlands
[7] Vrije Univ Amsterdam, Syst Bioinformat, Boelelaan 1108, NL-1081 HZ Amsterdam, Netherlands
[8] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
[9] NIST, Senior Sci Div, 100 Bur Dr, Gaithersburg, MD 20899 USA
[10] Hungarian Acad Sci, Biol Res Ctr, Inst Plant Biol, POB 521, H-6701 Szeged, Hungary
[11] Univ Ostrava, Fac Sci, Dept Phys, Chittussiho 10, Slezska Ostrava, Czech Republic
来源
关键词
Photosynthesis; Mueller matrix polarimetry; Circular dichroism; Chloroplast; Chlorophyll a; PIGMENT-PROTEIN COMPLEXES; CHLOROPLAST THYLAKOID MEMBRANES; DIFFERENTIAL SCATTERING; POLAR DECOMPOSITION; DICHROISM; RETARDER; MACROORGANIZATION; HOMOCHIRALITY; ORGANIZATION; DIFFUSE;
D O I
10.1016/j.bbagen.2018.03.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spectropolarimetry of intact plant leaves allows to probe the molecular architecture of vegetation photosynthesis in a non-invasive and non-destructive way and, as such, can offer a wealth of physiological information. In addition to the molecular signals due to the photosynthetic machinery, the cell structure and its arrangement within a leaf can create and modify polarization signals. Using Mueller matrix polarimetry with rotating retarder modulation, we have visualized spatial variations in polarization in transmission around the chlorophyll a absorbance band from 650 nm to 710 nm. We show linear and circular polarization measurements of maple leaves and cultivated maize leaves and discuss the corresponding Mueller matrices and the Mueller matrix decompositions, which show distinct features in diattenuation, polarizance, retardance and depolarization. Importantly, while normal leaf tissue shows a typical split signal with both a negative and a positive peak in the induced fractional circular polarization and circular dichroism, the signals close to the veins only display a negative band. The results are similar to the negative band as reported earlier for single macrodomains. We discuss the possible role of the chloroplast orientation around the veins as a cause of this phenomenon. Systematic artefacts are ruled out as three independent measurements by different instruments gave similar results. These results provide better insight into circular polarization measurements on whole leaves and options for vegetation remote sensing using circular polarization.
引用
收藏
页码:1350 / 1363
页数:14
相关论文
共 50 条
  • [21] Is a complete Mueller matrix necessary in biomedical imaging?
    Novikova, Tatiana
    Ramella-Roman, Jessica C.
    OPTICS LETTERS, 2022, 47 (21) : 5549 - 5552
  • [22] Rapid Mueller matrix polarimetry based on parallelized polarization state generation and detection
    Tripathi, Santosh
    Toussaint, Kimani C., Jr.
    OPTICS EXPRESS, 2009, 17 (24): : 21396 - 21407
  • [23] Optical anisotropy assessment in nanopaper sheets by imaging Mueller matrix polarimetry
    Danay Hernández-López
    Jaiver Chicangana-Cifuentes
    Yanier Ojeda-Morales
    Leticia Larios-López
    Geminiano Martínez-Ponce
    Cellulose, 2023, 30 : 5307 - 5319
  • [24] Optical anisotropy assessment in nanopaper sheets by imaging Mueller matrix polarimetry
    Hernandez-Lopez, Danay
    Chicangana-Cifuentes, Jaiver
    Ojeda-Morales, Yanier
    Larios-Lopez, Leticia
    Martinez-Ponce, Geminiano
    CELLULOSE, 2023, 30 (08) : 5307 - 5319
  • [25] Three linear probe polarization method in Mueller polarimetry with a source of arbitrary ellipticity
    S. N. Savenkov
    V. I. Grygoruk
    A. S. Klimov
    Ye. A. Oberemok
    Yu. A. Skoblya
    Journal of Applied Spectroscopy, 2008, 75
  • [26] Three linear probe polarization method in Mueller polarimetry with a source of arbitrary ellipticity
    Savenkov, S. N.
    Grygoruk, V. I.
    Klimov, A. S.
    Oberemok, Ye. A.
    Skoblya, Yu. A.
    JOURNAL OF APPLIED SPECTROSCOPY, 2008, 75 (06) : 872 - 877
  • [27] On calculating the degree of linear polarization: A Mueller matrix approach
    Shute, MW
    Brown, CS
    Jarzynski, J
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1997, 9 (07) : 949 - 951
  • [28] On calculating the degree of linear polarization: A Mueller matrix approach
    Lucent Technologies, Norcross, United States
    IEEE Photonics Technol Lett, 7 (949-951):
  • [29] Mueller matrix imaging with a polarization camera: application to microscopy
    Gottlieb, Dale
    Arteaga, Oriol
    OPTICS EXPRESS, 2021, 29 (21) : 34723 - 34734
  • [30] Combined wide-field Mueller matrix polarimetry and PS-OCT for rapid polarization imaging of biological samples
    Yin, Qiyuan
    Gao, Wanrong
    OPTICS AND LASERS IN ENGINEERING, 2024, 182