Marine biomass-derived composite aerogels for efficient and durable solar-driven interfacial evaporation and desalination

被引:109
|
作者
Yang, Lin [1 ]
Li, Na [1 ]
Guo, Cui [2 ,3 ]
He, Jintao [1 ]
Wang, Shuxue [1 ]
Qiao, Lifang [1 ]
Li, Fangbin [1 ]
Yu, Liangmin [4 ,5 ]
Wang, Min [2 ,3 ]
Xu, Xiaofeng [1 ]
机构
[1] Ocean Univ China, Coll Mat Sci & Engn, Qingdao 266100, Peoples R China
[2] Ocean Univ China, Coll Marine Life Sci, Qingdao 266003, Peoples R China
[3] Ocean Univ China, Inst Evolut & Marine Biodivers, Qingdao 266003, Peoples R China
[4] Ocean Univ China, Key Lab Marine Chem Theory & Technol, Minist Educ, Qingdao 266100, Peoples R China
[5] Pilot Natl Lab Marine Sci & Technol, Open Studio Marine Corros & Protect, Qingdao 266237, Peoples R China
关键词
Marine biomass; Ulva prolifera; Solar interfacial evaporation; Solar desalination; Water purification; HIGHLY EFFICIENT; WATER EVAPORATION; YELLOW SEA; SPONGE; NANOCOMPOSITE; HYDROGELS; PROLIFERA;
D O I
10.1016/j.cej.2020.128051
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solar-driven interfacial evaporation is an emerging and sustainable technology with growing potential for applications in water distillation and desalination. Despite the ongoing progress in clean water production, the high cost, delicate structures, leaching and disposal of synthetic materials remain the major roadblocks toward large-scale and real-world applications. Herein, nanocellulose (NC) is successfully extracted from abundant, inexhaustible and biodegradable biomass Ulva (Enteromorpha) prolifera that collected from the coast of Qingdao, China. Incorporation of polyvinyl alcohol (PVA) into the NC scaffolds and subsequent cross-linking endow the composite aerogels with efficient water diffusion, enhanced mechanical strength and good deformation resistance. The cross-linked composite aerogels can serve as main structural elements and integrate a monolithic, self-floating and durable steam generator. Under one sun, the good water evaporation rate of 1.4 kg m(-2) h(-1) is among the best-performing interfacial steam generators constructed by using cellulose-based materials as structural components. This study demonstrates a new concept of using marine (blue) biomass-derived NC as crude material and building block to construct high-performance and durable interfacial steam generators, synergistically considering clean water production and sustainability of marine ecosystems.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] SCGs-based heterogeneous aerogels for low-cost and efficient solar-driven desalination
    Zhou, Li
    Qin, Yaokang
    Tang, Hongwei
    Li, Zhi
    Chen, Hong
    Pan, Fei
    Chen, Renjie
    Ju, Haidong
    Meng, Wenjun
    DESALINATION, 2025, 608
  • [42] Transforming waste aramid fibers and carbon fibers into aerogels for efficient solar-driven water desalination
    Singh, Mandeep
    Qin, Si
    Usman, Ken Alren
    Wang, Lifeng
    Liu, Dan
    Ma, Yuxi
    Lei, Weiwei
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 281
  • [43] An overview of photothermal materials for solar-driven interfacial evaporation
    Fang, Yiming
    Gao, Huimin
    Cheng, Kaiting
    Bai, Liang
    Li, Zhengtong
    Zhao, Yadong
    Xu, Xingtao
    CHINESE CHEMICAL LETTERS, 2025, 36 (03)
  • [44] Solar-driven interfacial evaporation of a hanging liquid marble
    Yao, Guansheng
    Xu, Jinliang
    Feng, Yijun
    Wang, Lin
    Liu, Guohua
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 234
  • [45] An overview of photothermal materials for solar-driven interfacial evaporation
    Yiming Fang
    Huimin Gao
    Kaiting Cheng
    Liang Bai
    Zhengtong Li
    Yadong Zhao
    Xingtao Xu
    Chinese Chemical Letters, 2025, 36 (03) : 34 - 43
  • [46] Hydrodynamic solar-driven interfacial evaporation - Gone with the flow
    Ren, Jiawei
    Xu, Jia
    Tian, Shuangchao
    Shi, Ke
    Gu, Tianyu
    Zhao, Jiaheng
    Li, Xing
    Zhou, Zhiwei
    Tijing, Leonard
    Shon, Ho Kyong
    WATER RESEARCH, 2024, 266
  • [47] Solar-driven interfacial evaporation of a hanging liquid marble
    Yao, Guansheng
    Xu, Jinliang
    Feng, Yijun
    Wang, Lin
    Liu, Guohua
    Solar Energy Materials and Solar Cells, 2022, 234
  • [48] Progress and challenges of biomimetic solar-driven interfacial evaporation
    Li, Jiyan
    Liu, Meichen
    Luo, Wenwen
    Xing, Guoyu
    Sun, Hanxue
    Jingxi Huagong/Fine Chemicals, 2024, 41 (04): : 740 - 749
  • [49] RESEARCH PROGRESS OF SOLAR-DRIVEN INTERFACE EVAPORATION FOR SEAWATER DESALINATION
    Sun, Mengxi
    Chen, Zhili
    Chen, Li
    Tang, Shan
    Li, Guangxue
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (08): : 423 - 431
  • [50] Mechanically robust biomass-derived carbonaceous foam for efficient solar water evaporation
    Ma, Sainan
    Wu, Yuhao
    Lv, Ruiling
    Gao, Xiang
    Wang, Qianqian
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (45) : 21771 - 21779